PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

SMaRT correction

ArticleInfo		
ArticleID	:	4372
ArticleDOI	:	10.1186/gb-spotlight-20020109-01
ArticleCitationID	:	spotlight-20020109-01
ArticleSequenceNumber	:	38
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2002–01–09 OnlineDate : 2002–01–09
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

A technique called SMaRT (spliceosome-mediated RNA *Trans*-splicing) has been developed to generate functionally corrected mRNA transcripts and proteins in patients with genetic diseases. In the January issue of Nature Biotechnology, Liu *et al.* describe the use of SMaRT technology to correct endogenous ΔF508 mutations in the cystic fibrosis transmembrane conductance regulator (*CFTR*) gene (*Nature Biotechnology* 2002, **20**:47-52). They constructed recombinant adenoviral vectors containing CFTR exons 10-24 and a *trans*-splicing domain. These could partially restore CFTR chloride ion conductance in ΔF508 airway epithelial cells *in vitro*. The SMaRT vectors resulted in the expression of corrected CFTR mRNA and protein. Liu *et al.* also demonstrated functional correction *in vivo* using a human bronchial xenograft model. These results show the potential feasibility of using SMaRT technology to correct, rather than replace, defective genes.

References

- 1. Spliceosome-mediated RNA trans-splicing as a tool for gene therapy.
- 2. Nature Biotechnology, [http://biotech.nature.com]