PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Death domains, dysplasia and development

	<u> </u>	
ArticleInfo		
ArticleID	:	4282
ArticleDOI	:	10.1186/gb-spotlight-20011220-01
ArticleCitationID	:	spotlight-20011220-01
ArticleSequenceNumber	:	353
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2001–12–20OnlineDate: 2001–12–20
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

Edar is a member of the tumour-necrosis factor receptor (TNFR) family of signalling molecules that contains an intracellular death-domain. Mutation of the mammalian *downless* gene encoding Edar, or *Tabby* which encodes its ligand Eda, results in ectodermal dysplasia and defective morphogenesis. In the December 20/27 Nature, Headon *et al.* report characterization of the protein encoded by the mouse *crinkled* locus, a mutation in which results in hypohidrotic dysplasia identical to *Tabby* and *downless* mutants (*Nature* 2001, **414**:913-916). They performed positional cloning of the *crinkled* (*cr*) gene from *cr* x *Mus castaneous* backcrosses. Comparison of the syntenic regions of the mouse and human genomes led to the identification of a gene encoding a death-domain adaptor protein, named *EDARADD*. The human *EDARADD* gene is mutated in patients with autosomal hypohidrotic ectodermal dysplasia. The Edaradd protein interacts with the intracellular domain of Edar and resulted in activation of the signalling NF κ B pathway. The *downless* and *crinkled* mutations abolish Edar-Edaradd interaction. This study defines a linear death-receptor pathway with a critical role in mammalian development.

References

- 1. The TNF and TNF receptor superfamilies: integrating mammalian biology.
- 2. Nature, [http://www.nature.com]