PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Green flies

ArticleInfo		
ArticleID	:	4281
ArticleDOI	:	10.1186/gb-spotlight-20011219-01
ArticleCitationID	:	spotlight-20011219-01
ArticleSequenceNumber	:	352
ArticleCategory	÷	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2001–12–19OnlineDate: 2001–12–19
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

In the December 18 Proceedings of the National Academy of Sciences, Morin *et al.* describe a genetrap strategy that generates green fluorescent protein (GFP) fusions and allows the study of protein distribution and subcellular localization in living flies (*Proc Natl Acad Sci USA* 2001, **98**:15050-15055). They created a protein-trap transposon (PTT), a P element containing an artificial exon encoding GFP and flanked by splice acceptor and donor sequences. They derived over 600 fluorescent *Drosophila* lines and observed fusion proteins localized in a range of cellular organelles. Characterization of several of these revealed that in most cases splicing occurred correctly and fusions recapitulated endogenous expression of the trapped gene. Over 40% of characterized lines correspond to genes that were not predicted by the *Drosophila* Genome Project.

References

- 1. Proceedings of the National Academy of Sciences, [http://www.pnas.org]
- 2. Green fluorescent protein as a marker for gene expression.