PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

Evolving without sex

ArticleInfo		
ArticleID	:	4280
ArticleDOI	:	10.1186/gb-spotlight-20011218-01
ArticleCitationID	\Box	spotlight-20011218-01
ArticleSequenceNumber	\Box	351
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2001–12–18 OnlineDate : 2001–12–18
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Arbuscular mycorhizal fungi, which have lived for 400 million years without sex, present a challenge to evolutionary theories about the role of sex. In the December 13 Nature Gerrit Kuhn and researchers at the University of Lausanne, Switzerland, discuss genetic variation within Arbuscular mycorhizal fungus individuals, which contain hundreds of inherited nuclei (*Nature* 2001, **414**:745-748). They carried out specific DNA-DNA FISH (fluorescent *in situ* hybridization) analysis to show that fungal spores contain a population of genetically different nuclei, and used phylogenetic analysis to conclude that the genetic variations are due to accumulation of mutations in a clonal genome and not to recombination. These results highlight the difficulties of applying standard evolutionary and population genetics theories to multi-genomic organisms.

References

- 1. Evolutionary genetics. Sinless originals.
- 2. *Nature*, [http://www.nature.com]
- 3. University of Lausanne, [http://www.unil.ch/]