PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Genetics of social behaviour

ArticleInfo		
ArticleID	:	4254
ArticleDOI	:	10.1186/gb-spotlight-20011116-01
ArticleCitationID	:	spotlight-20011116-01
ArticleSequenceNumber	:	325
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	·	RegistrationDate: 2001–11–16OnlineDate: 2001–11–16
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

Social behaviour can be pretty complex at the best of times, and defining the underlying genetic events has provided a formidable challenge. In the November 15 Sciencexpress, Michael Krieger and Kenneth Ross, from the University of Georgia, describe the first clear example of a single gene affecting complex social behaviour (*ScienceXpress* 10.1126/science.1065247). Colony queen number in the fire ant *Solenopsis invicta* is associated with variations in the *Gp-9* gene, such that worker ants with the *B* allele are associated with a single queen (monogyne social form), whereas the *b* allele workers are polygyne. Krieger and Ross sequenced the *Gp-9* gene and show that it encodes a pheromone-binding protein. Thus, GP-9 may play a role in chemoreception by influencing worker recognition and acceptance of pheromone-producing queens. The *B* and *b* alleles are distinguished by several amino-acid changes. The Gp-9 allele variation is conserved in South American fire ants exhibiting social polymorphism. This study provides fascinating insights into the genetic basis and evolution of complex social behaviour.

References

- 1. Sciencexpress, [http://www.sciencexpress.org]
- 2. University of Georgia , [http://www.uga.edu]
- 3. Genetic control of social organization in an ant
- 4. Do pheromone binding proteins converge in amino acid sequence when pheromones converge?