PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Ancient introns

ArticleInfo		
ArticleID	:	4250
ArticleDOI	÷	10.1186/gb-spotlight-20011113-01
ArticleCitationID	:	spotlight-20011113-01
ArticleSequenceNumber	:	321
ArticleCategory	:	Research news
ArticleFirstPage	÷	1
ArticleLastPage	÷	2
ArticleHistory		RegistrationDate: 2001–11–13OnlineDate: 2001–11–13
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

The origins of introns and their evolutionary role remain unclear. In the November 6 Proceedings of the National Academy of Science, Fedorov *et al.* describe the use of a computer program, called INTRONMAP to present evidence for the existence of ancient introns (*Proc Natl Acad Sci USA* 2001, **98**:13177-13182). They used the program to map intron positions onto homologous genes encoding proteins for which the three-dimensional structure is known. They applied the program to 665 nonredundant protein sequences in the Protein Data Bank and mapped over 8,000 introns. The result was a correlation of phase-zero introns with module boundaries in proteins, corresponding to ancient conserved regions (ACR). There was no correlation for phase-one or phase-two positions, or for non-ACR proteins (which presumably represent 'modern' genes).

References

- 1. What introns have to tell us: hierarchy in genome evolution.
- 2. Proceedings of the National Academy of Science, [http://www.pnas.org]
- 3. INTONMAP, [http://mcb.harvard.edu/gilbert/INTRONMAP]
- 4. Protein Data Bank, [http://www.rcsb.org/pdb/]