PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Hammerhead selection

ArticleInfo		
ArticleID	:	4242
ArticleDOI	:	10.1186/gb-spotlight-20011102-01
ArticleCitationID	:	spotlight-20011102-01
ArticleSequenceNumber	:	313
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2001–11–02 OnlineDate : 2001–11–02
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Hammerhead ribozymes with self-cleaving properties have been found in a range of organisms, including plants, newts, schistosomes and cave crickets. In the November 1 Nature, Salahi-Ashtiani and Szostak of the Howard Hughes Medical Institute and Massachusetts General Hospital describe an in vitro system to address the origins of hammerhead ribozymes (Nature 2001, 413:82-84). They used a DNA collection encoding large random-sequence RNAs to select self-cleaving RNAs. Repeated rounds of selection lead to the artificial evolution of self-cleaving molecules. Of these, several have sequence features of hammerhead ribozymes. The authors suggest that the hammerhead ribozyme is the simplest RNA motif with self-cleaving abilities, which explains why it has been selected repeatedly during evolution.

References

- 1. Self-cleaving catalytic RNA
- 2. *Nature*, [http://www.nature.com]
- 3. Howard Hughes Medical Institute, [http://www.hhmi.org]
- 4. Massachusetts General Hospital , [http://www.mgh.harvard.edu]