PublisherInfo				
PublisherName	\Box	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

All about abo

ArticleInfo		
ArticleID	:	4228
ArticleDOI	:	10.1186/gb-spotlight-20011017-02
ArticleCitationID		spotlight-20011017-02
ArticleSequenceNumber	:	299
ArticleCategory		Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2001–10–17 OnlineDate : 2001–10–17
ArticleCopyright		BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Mutation of the *Drosphila* abnormal oocyte (abo) gene causes a recessive maternal-effect lethality, which can be rescued by specific regions of heterochromatin. In the October 9 Proceedings of the National Academy of Sciences, Berloco *et al.* report a characterization of the *abo* protein product and its function (*Proc Natl Acad Sci USA* 2001, **98:**12126-12131). They cloned the *abo* gene and showed that it encodes a chromosomal protein that binds specifically to the regulatory regions within the histone gene cluster (on the 39E region of polytene chromosomes). Similar proteins were found in *Arabidopsis* (the DET1 protein), as well as in mouse and man. Chromatin immunoprecipitation experiments demonstrated that Abo binds to the histone gene promoter regions, and *abo* mutations affected histone expression levels. Deleting the histone cluster rescued the *abo* maternal-effect defects. The authors conclude that Abo is a negative regulator of histone gene expression.

References

- 1. Developmental genetical analysis and molecular cloning of the *abnormal oocyte* gene of *Drosophila melanogaster*
- 2. Proceedings of the National Academy of Sciences, [http://www.pnas.org]

This PDF file was created after publication.