PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Plague genome

ArticleInfo		
ArticleID	:	4216
ArticleDOI	:	10.1186/gb-spotlight-20011004-01
ArticleCitationID	:	spotlight-20011004-01
ArticleSequenceNumber	:	287
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2001–10–04OnlineDate: 2001–10–04
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

Yersinia pestis is a Gram-positive bacterium that has wreaked havoc for centuries by causing plague pandemics such as the Black Death. Threats that *Y. pestis* could be used as a biological warfare agent suggest that it will continue to provide a healthcare challenge in the future. In the October 4 Nature, Parkhill *et al.* from The Sanger Centre report the complete genome sequence of the *Y. pestis* strain CO92 (*Nature* 2001, **413**:523-527). The killer genome consists of a 4.65 megabase chromosome and three plasmids (of 96.2, 70.3 and 9.6 kb). Anomalies in GC composition bias in the Y. pestis genome suggest frequent intragenomic recombination events, and there is ample evidence for lateral transfer and horizontal gene acquisition from other bacteria and insect parasites. Genes whose function has been lost during evolution (leading to pseudogene accumulation) include those for motility, lipopolysaccharide biosynthesis and characteristics of enteropathogenicity. Parkhill *et al.* suggest that comparative genomic analysis will reveal what determines the evolution of virulent pathogens such as *Y. pestis*.

References

- 1. Yersinia pestis etiologic agent of plague.
- 2. Nature, [http://www.nature.com]
- 3. The Sanger Centre , [http://www.sanger.ac.uk]
- 4. Y. pestis genome, [http://www.sanger.ac.uk/Projects/Y_pestis/]