PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Muscle profiles

ArticleInfo		
ArticleID	:	4213
ArticleDOI	:	10.1186/gb-spotlight-20011001-01
ArticleCitationID	:	spotlight-20011001-01
ArticleSequenceNumber	÷	284
ArticleCategory	:	Research news
ArticleFirstPage	÷	1
ArticleLastPage	÷	2
ArticleHistory	·	RegistrationDate: 2001–10–01OnlineDate: 2001–10–01
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	·	
ArticleContext	:	130592211

Different skeletal myofibre types are known to express distinct muscle myosin isoforms. In the Early Edition of the Proceedings of the National Academy of Sciences, Porter *et al.*, from Case Western Reserve University, Cleveland, USA, describe a genomics approach to exploring the molecular signatures underlying skeletal muscle biology (Proc Natl Acad Sci USA 2001, 10.1073/pnas.211257298). They used high-density oligonucleotide arrays (from Affymetrix) to measure gene expression profiles in the extraocular muscle (EOM), jaw and hindlimb muscles of mice. A third of the genes examined were expressed in each muscle type. Profile analysis indicated that EOM is a distinct muscle allotype defined by the expression of 400 EOM-specific genes. These include genes implicated in sarcomeric organisation and excitation-contraction coupling. Thus, microarrays can be used to define the molecular basis for myofibre classes and to characterize genes contributing to skeletal muscle biology.

References

- 1. Mammalian motor units: physiological-histochemical correlation in three types in cat gastrocnemius.
- 2. Proceedings of the National Academy of Sciences, [http://www.pnas.org]
- 3. Case Western Reserve University, [http://www.cwru.edu]

4. Extraocular muscle is defined by a fundamentally distinct gene expression profile, [http://www.pnas.org/cgi/doi/10.1073/pnas.211257298]