PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

Viral discovery

ArticleInfo		
ArticleID	:	4211
ArticleDOI	:	10.1186/gb-spotlight-20010927-01
ArticleCitationID	:	spotlight-20010927-01
ArticleSequenceNumber	:	282
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2001–09–27 OnlineDate : 2001–09–27
ArticleCopyright		BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

The isolation of novel viral genomes from serum or plasma samples presents a significant technical challenge. In the September 25 Proceedings of the National Academy of Sciences, Tobias Allander and colleagues at the National Institute of Allergy and Infectious Diseases, Bethesda, USA, describe a sensitive method for identifying viruses in serum samples (*Proc Natl Acad Sci USA* 2001, **98:**11609-11614). The method is based on the fact that viral genomes are generally protected from DNase degradation by protein capsids and lipid envelopes. Allander *et al.* developed a technique using DNase treatment of serum followed by nucleic acid extraction, restriction enzyme digestion and sequence-independent single primer amplification (SISPA). This methodology, that they named DNase-SISPA, can detect viruses at titres of less that 106 viral genome equivalents per millilitre. Allander *et al.* applied the DNase-SISPA technique to clone two new bovine parvoviruses from bovine serum.

References

- 1. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome
- 2. Proceedings of the National Academy of Sciences, [http://www.pnas.org]
- 3. National Institute of Allergy and Infectious Diseases, [http://www.niaid.nih.gov]
- 4. Sequence-independent, single-primer amplification (SISPA) of complex DNA populations.