PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

p53 in worms

ArticleInfo		
ArticleID	:	4201
ArticleDOI	:	10.1186/gb-spotlight-20010914-01
ArticleCitationID	:	spotlight-20010914-01
ArticleSequenceNumber	:	272
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	\Box	2
ArticleHistory	:	RegistrationDate : 2001–09–14 OnlineDate : 2001–09–14
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Early analysis of the Caenorhabditis elegansgenome failed to detect a gene resembling the important mammalian tumour suppressor gene *p53*. In the September 13 ScienceXpress, Brent Derry and colleagues at the University of California, Santa Barbara report that there is a nematode *p53* orthologue that is involved in apoptosis and the stress response (zdoi;10.1126/science.1065486). They named the gene *cep-1* (*C. elegans* p53-like 1). Disrupting *cep-1* expression (by mutation or RNAi experiments) had no affect on developmental cell death, but rendered germline cells resistant to apoptosis induced by ionizing radiation. Like the Drosophilahomologue, *C. elegans* p53 seems not to be involved in cell-cycle arrest. Overexpression of CEP-1 caused caspase (ced3)-independent cell death and lethality. These results offer a system to screen for genetic modifiers of the *p53* pathway.

References

- 1. Comparative genomics of the eukaryotes
- 2. ScienceXpress, [http://www.sciencexpress.org]
- 3. University of California, Santa Barbara, [http://www.ucsb.edu]
- 4. Drosophila p53 is a structural and functional homolog of the tumor suppressor p53.