PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Mitochondrial inheritance

ArticleInfo		
ArticleID	:	4195
ArticleDOI	:	10.1186/gb-spotlight-20010906-01
ArticleCitationID	:	spotlight-20010906-01
ArticleSequenceNumber	:	266
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2001–09–06OnlineDate: 2001–09–06
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

In the September 6 Nature, Berlin and Ellegren from Uppsala University, Sweden, examine the controversial clonal inheritance theory for vertebrate mitochondrial DNA (mtDNA) by following coinheritance of a female-specific nuclear DNA marker (*Nature* 2001, **413**:37-38). They examined the avian W chromosome, most of which is non-recombining and therefore clonally transmitted by females. A polymorphic (CA)n repeat, *NVHfp49*, on the W chromosome of 53 female peregrine falcons (*Falco peregrinus*) and 1,625 bp of mtDNA sequence were followed. The patterns of divergence of mtDNA and W-chromosome sequences were completely concordant. These data support the hypothesis of clonal inheritance of mtDNA from mothers to daughters without recombination.

References

- 1. Nature, [http://www.nature.com]
- 2. Uppsala University, [http://www.uu.se]
- 3. Linkage disequilibrium and recombination in hominid mitochondrial DNA
- 4. Evolution of the avian sex chromosomes and their role in sex determination.

This PDF file was created after publication.