PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Viral killer

ArticleInfo		
ArticleID	:	4191
ArticleDOI	:	10.1186/gb-spotlight-20010831-01
ArticleCitationID	:	spotlight-20010831-01
ArticleSequenceNumber	:	262
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2001–08–31OnlineDate: 2001–08–31
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

The ability to selectively kill cells lacking normal p53 activity is an attractive anti-cancer strategy. In the August 30 Nature, Kenneth Raj and colleagues from the Swiss Institute for Experimental Cancer Research (ISREC) suggest that adeno-associated virus (AAV) could be employed as a 'hired assassin' (*Nature* 2001, **412**:914-917). They found that AAV induced apoptosis of p53-deficient osteosarcoma cells, but induced cell-cycle arrest (in G2 phase) in cells expressing p53. None of the proteins encoded by the AAV genome was required for either of these effects; hairpin structures within the single-stranded viral genome induce a DNA-damage response that leads to apoptosis in the absence of functional p53. Raj *et al.* show that AAV can inhibit tumor growth in mouse models and suggest that viral delivery of DNA with unusual structures could be used to induce a DNA-damage response and cell death in the treatment human tumors that have lost p53 activity.

References

- 1. Nature, [http://www.nature.com]
- 2. Swiss Institute for Experimental Cancer Research , [http://www-isrec.unil.ch/]
- 3. Nucleotide sequence and organization of the adeno-associated virus 2 genome.

This PDF file was created after publication.