PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Lipocalin killer

ArticleInfo		
ArticleID	:	4169
ArticleDOI	:	10.1186/gb-spotlight-20010808-01
ArticleCitationID	:	spotlight-20010808-01
ArticleSequenceNumber	:	240
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2001–08–08 OnlineDate : 2001–08–08
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

In the August 3 Science, Laxminarayana Devireddy and colleagues from the University of Massachusetts Medical School report the use of DNA microarrays to identify genes whose expresssion is induced during apoptosis (*Science* 2001, **293**:829-834). They studied cell death of a mouse pro-B lymphocytic cell line upon withdrawl of interleukin-3. The gene that showed the largest induction (12.6-fold) was *24p3*, which encodes a lipocalin. Lipocalins are small secreted proteins, and Devireddy *et al.* found that conditioned medium from dying lymphocytes induced cell death in a range of leukocytic cells. Recombinant 24p3 protein alone could also induce lymphocyte apoptosis. The cell death induced by 24p3 probably plays a role in immune-system homeostasis and in the regulation of the inflammatory response. The authors point out how important the expression profiling approach was in leading them to a unidentified killer.

References

- 1. Science, [http://www.sciencemag.org]
- 2. University of Massachusetts Medical School, [http://www.umassmed.edu]
- 3. The Lipocalin Website, [http://www.jenner.ac.uk/lipocalin.htm]

This PDF file was created after publication.