PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Imprinted inactivation

ArticleInfo		
ArticleID	:	4161
ArticleDOI	:	10.1186/gb-spotlight-20010730-01
ArticleCitationID	:	spotlight-20010730-01
ArticleSequenceNumber	:	232
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2001–07–30 OnlineDate : 2001–07–30
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

The eed (embryonic ectoderm development) gene is a member of the mouse *Polycomb* group (*Pc-G*) and is required for early gastrulation. In the Advance Online issue of Nature Genetics, Jianbo Wang and colleagues from the University of North Carolina define a role for *eed* in X chromosome inactivation. They analysed trophoblast giant cells in *eed*-null embryonic deciduas and found developmental defects in *eed*-null females but not in male embryos. To investigate the role of paternal X inactivation, Wang *et al.* crossed the eed-mutant mice with mice carrying a paternally inherited X-linked green fluorescent protein (GFP) transgene. The presence of fluorescent extra-embryonic cells in *eed*-null females suggests that *eed* is essential for maintaining paternal X-inactivation. The authors propose a model in which interaction between the Eed protein and histone deacetylases maintains gene silencing on the imprinted X chromosome in mouse extra-embryonic tissues.

References

- 1. The Polycomb-group gene eed is required for normal morphogenetic movements during gastrulation in the mouse embryo.
- 2. Nature Genetics, [http://genetics.nature.com]
- 3. University of North Carolina, [http://www.unc.edu/]
- 4. Non-invasive sexing of preimplantation stage mammalian embryos
- 5. Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation.