PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

BRCA2-repair

ArticleInfo		
ArticleID	:	4152
ArticleDOI	:	10.1186/gb-spotlight-20010718-01
ArticleCitationID	:	spotlight-20010718-01
ArticleSequenceNumber	:	223
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2001–07–18 OnlineDate : 2001–07–18
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Mutations in the human *BRCA2* gene are associated with susceptibility to early-onset breast cancer, but it is unclear how the wild-type BRCA2 protein works. In the July 17 Proceedings of the National Academy of Sciences, Xia *et al.* describe investigation of the role of BRCA2 in DNA repair (*Proc Natl Acad Sci USA* 2001, **98:**8644-8649). They expressed *BRCA2* in Capan-1 carcinoma cells, the only human cell line that has non-functional BRCA2. BRCA2 expression increased homologous recombination ten-fold, and required interaction with the Rad51 protein. This homologous recombination increase resulted in increased resistance to ionizing radiation. BRCA2 expression had no effect on non-homologous end joining (NHEJ), another double-strand-break repair pathway. Thus, BRCA2 regulation of homologous recombination ensures the repair of damaged DNA to maintain genome integrity.

References

- 1. Breast cancer genetics: what we know and what we need
- 2. Proceedings of the National Academy of Sciences, [http://www.pnas.org]
- 3. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas.