PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

Pin-ning down breast cancer

ArticleInfo		
ArticleID	:	4144
ArticleDOI	:	10.1186/gb-spotlight-20010711-01
ArticleCitationID	:	spotlight-20010711-01
ArticleSequenceNumber	:	215
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2001–07–11 OnlineDate : 2001–07–11
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Pin1, a member of a new family of phosphorylation-specific peptidyl-prolyl isomerases (PPIases), regulates mitosis and neuronal cell death in Alzheimer's disease. In the July 2 EMBO Journal, Wulf *et al.* propose a mechanism by which Pin1 may contribute to cell proliferation in breast cancer cells (*EMBO Journal* 2001, **20**:3459-3472). They found that Pin1 was overexpressed in breast cancer tissue and correlated with the tumour grade and with the level of cyclin D1 expression. Wulf *et al.* show that Pin1 activates the cyclin D1 promoter by binding to phosphorylated Ser63/73-Pro motifs in the c-Jun transcription factor and enhancing its transactivating function. In this way, Pin1 cooperates with oncogenic Ras to drive cyclin D1 expression and cell proliferation.

References

- 1. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism.
- 2. EMBO Journal, [http://intl.emboj.org]

This PDF file was created after publication.