PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Id and aging

ArticleInfo		
ArticleID	:	4133
ArticleDOI	:	10.1186/gb-spotlight-20010629-01
ArticleCitationID	:	spotlight-20010629-01
ArticleSequenceNumber	\Box	204
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	\Box	2
ArticleHistory	:	RegistrationDate : 2001–06–29 OnlineDate : 2001–06–29
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Id1 is one of a family of helix-loop-helix (HLH) proteins that inhibits transcription by sequestering other HLH factors. It has been implicated in the regulation of cell growth and cellular aging. In the July 3 Proceedings of the National Academy of Sciences, Alani *et al.* provide genetic evidence supporting a role for Id1 in preventing cell aging (*Proc Natl Acad Sci USA* 2001, **98:**7812-7816). They found that fibroblasts from Id1-null mice display premature senescence with increased expression of the cell-cycle regulators p16/INK4a, cyclin D1 and cyclin E. They show that Id1 specifically inhibits transcription of the *p16/INK4a* promoter, but does not affect p19/Arf regulation (although p19 is transcribed from the same locus as p16). Two E-box motifs in the *p16/INK4a* promoter are essential for Id1 repression. Finally, they report increased expression of *p16/INK4a in vivo*, in the ventral telencephalon of *Id1*-null embryos. The authors speculate that Id1 repression may be responsible for deregulation of p16 expression in the early stages of tumorigenesis.

References

- 1. ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis
- 2. Proceedings of the National Academy of Sciences, [http://www.pnas.org]
- 3. High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice.