PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Apoptosis and disease in plants

ArticleInfo		
ArticleID	:	4106
ArticleDOI	:	10.1186/gb-spotlight-20010604-01
ArticleCitationID	:	spotlight-20010604-01
ArticleSequenceNumber	:	177
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2001–06–04 OnlineDate : 2001–06–04
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext		130592211

The hypersensitive response (HR) of plants to pathogenic infection involves a form of programmed cell death, but the molecular mechanisms remain unclear. In the June 5 Proceedings of the National Academy of Sciences, Dickman *et al.* describe the use of transgenic plants expressing known anti-apoptotic genes from animals to explore the role of apoptosis in host defence (*Proc Natl Acad Sci*USA 2001, **98:**6957-6962). They generated tobacco plants expressing human bcl-2, human bcl-xl, nematode ced-9 or baculovirus op-iap. All of the transgenes conferred resistance to fungal phytopathogens and to tomato spotted wilt virus. The anti-apoptotic transgenes also inhibited DNA laddering (a marker of apoptosis) following tobacco plant infection with necrotrophic fungi. This 'comparative pathobiology' approach demonstrates that plant-pathogen interactions induce cell death that resembles animal apoptosis. These transgenic plants will be important to studies of the mechanisms of plant cell death and to the development of disease-resistant crops.

References

- 1. Hypersensitive response-related death.
- 2. Proceedings of the National Academy of Sciences, [http://www.pnas.org/]
- 3. Bcl-2 family proteins.
- 4. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death.
- 5. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death.
- 6. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif.