PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

ssDNA Tools

ArticleInfo		
ArticleID	:	4105
ArticleDOI	:	10.1186/gb-spotlight-20010601-02
ArticleCitationID	\Box	spotlight-20010601-02
ArticleSequenceNumber	:	176
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2001–06–01 OnlineDate : 2001–06–01
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	$\begin{bmatrix} \vdots \end{bmatrix}$	130592211

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Homologous recombination of DNA is a powerful tool for chromosome engineering experiments, but is a rare event, requiring long stretches of homology and complex reactions. Phage-mediated systems allow efficient recombination of linear DNA with relatively short homologies. In the June 5 Proceedings of the National Academy of Sciences, Ellis *et al.* describe an efficient recombination system that uses short synthetic single-stranded DNA (ssDNA) (*Proc Natl Acad Sci* USA 2001, **98:**6742-6746). They show that oligonucleotides as short as 30 nucleotides could be used to correct 'amber' mutations in the *E. coli galK* gene using the bacteriophage lambda Red system (with efficiencies up to 6%). Only the lambda Beta protein is absolutely required for ssDNA recombination. The authors propose a recombination mechanism in which the Beta protein binds and anneals the ssDNA to a complimentary single-strand near the DNA replication fork. They suggest that ssDNA may prove useful for chromosome modification and repair in eukaryotic cells.

References

- 1. An efficient recombination system for chromosome engineering in Escherichia coli.
- 2. Proceedings of the National Academy of Sciences, [http://www.pnas.org]