PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Rhythm disorder alleles

ArticleInfo		
ArticleID	:	4063
ArticleDOI	:	10.1186/gb-spotlight-20010424-02
ArticleCitationID	:	spotlight-20010424-02
ArticleSequenceNumber	:	134
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2001-04-24OnlineDate: 2001-04-24
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

The genes that regulate circadian rhythms have been genetically characterized in flies and mice. In the April issue of EMBO Reports, Ebisawa *et al.* describe a screen for genetic polymorphisms associated with human circadian rhythm disorders (*EMBO Reports* 2001, **2**:342-346). They performed a PCR-based analysis of the human *period3* gene (*hPer3*), a homolog of a *Drosophila* clock gene, and identified 20 sequence variations, of which six predicted amino acid changes. Ebisawa *et al.* defined four haplotypes for the *hPer3* gene. Screening a group of 48 patients with delayed sleep phase syndrome (DSPS), they discovered that the H4 haplotype was associated with DSPS in approx 15% of cases. The authors speculate that a structural polymorphism may affect hPer3 phosphorylation, causing DSPS susceptibility.

References

- 1. Central clocking.
- 2. Circadian rhythm genetics: from flies to mice to humans.
- 3. *EMBO Reports*, [http://www.embo-reports.oupjournals.org]
- 4. Delayed sleep phase syndrome: a review of its clinical aspects.

This PDF file was created after publication.