PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Adapting to the cold

ArticleInfo		
ArticleID	:	4041
ArticleDOI	:	10.1186/gb-spotlight-20010405-01
ArticleCitationID	:	spotlight-20010405-01
ArticleSequenceNumber	:	112
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	·	RegistrationDate: 2001-04-05OnlineDate: 2001-04-05
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Kenneth Lee Email: kenlee_fr@yahoo.fr

Plants have evolved a number of cold-response genes encoding proteins that induce tolerance to freezing, alter water absorption and initiate many other low temperature induced processes. In the 1 April Genes and Development, Jian-Kang Zhu and colleagues of the Department of Plant Sciences, University of Arizona, shed light on how these genes are regulated.

Lee *et al.* report that the protein HOS1 negatively regulates cold-response genes in *Arabidopsis*. At low temperatures, HOS1 relocalizes from the cytoplasm to the nucleus where it regulates gene expression; *hos1* mutants show an excessive induction of cold-response genes. The *HOS1* gene was mapped to chromosome II of *Arabidopsis* and cloned. It encodes a protein of 915 amino acids with a nuclear localization signal and a RING finger. Proteins with this motif have been implicated in the breakdown of other proteins by a process that involves ubiquitination.

Lee *et al.* speculate that HOS1 might regulate the function of cold-response genes by targeting the gene products for degradation.

References

1. Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu JK: The *Arabidopsis HOS1* gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. *Genes Dev* 2001, 15., [http://www.genesdev.org/]

2. Department of Plant Sciences, University of Arizona, [http://ag.arizona.edu/pls/]

This PDF file was created after publication.