PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

N-myctargets

ArticleInfo		
ArticleID	:	4023
ArticleDOI	:	10.1186/gb-spotlight-20010322-01
ArticleCitationID	:	spotlight-20010322-01
ArticleSequenceNumber	:	94
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	·	RegistrationDate: 2001–03–22OnlineDate: 2001–03–22
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Members of the myconcogene family are often amplified or mutated in human tumours. In the March 15 EMBO Journal, Boon *et al.* described the use of a neuroblastoma cell line with an inducible N-*myc* allele to identify genes regulated by N-*myc* (*EMBO Journal* 2001, **20**:1383-1393). They performed serial analysis of gene expression (SAGE) to detect over a hundred genes up-regulated upon N-*myc* expression. The target genes included over 50 encoding ribosomal proteins, as well as key genes in rRNA maturation and ribosome assembly. Boon *et al.* also found a 45% higher rRNA content in cells expressing N-*myc*. Many of the identified N-*myc* target genes are also up-regulated in neuroblastomas with N-*myc* amplifications, and about 40% are also upregulated by the related c-*myc* transcription factor. Induction of the protein synthesis machinery by *myc* oncogenes may explain their role in regulating cell size.

References

- 1. Function of the c-Myc oncogenic transcription factor.
- 2. EMBO Journal, [http://www.emboj.org]

3. Conditional expression of N-myc in human neuroblastoma cells increases expression of alphaprothymosin and ornithine decarboxylase and accelerates progression into S-phase early after mitogenic stimulation of quiescent cells.

- 4. Serial analysis of gene expression.
- 5. c-Myc enhances protein synthesis and cell size during B lymphocyte development.

This PDF file was created after publication.