PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	: BioMed Central			

Histone codes

ArticleInfo		
ArticleID	:	4019
ArticleDOI	:	10.1186/gb-spotlight-20010319-01
ArticleCitationID	:	spotlight-20010319-01
ArticleSequenceNumber	:	90
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2001–03–19 OnlineDate : 2001–03–19
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext		130592211

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

The histone code hypothesis posits that distinct combinations of histone modifications can recruit chromatin-modifying enzymes and exert epigenetic control over heterochromatin assembly. In the March 15 ScienceXpress, Nakayama *et al.* describe a role for histone methylation in heterochromatin assembly in the fission yeast *Schizosaccharomyces pombe*. The Clr4 protein methylated lysine 9 of histone H3 (H3Lys9) preferentially within heterochromatin-associated regions. H3Lys9 methylation led to the recruitment of the chromodomain protein Swi6, a homolog of *Drosophila* HP1. Both methylation and recruitment were dependent on activity of the histone deacetylase Clr3. Chromatin assembly by Swi6/Clr4 at the mating-type locus results in silencing. Hence, sequential deacetylation and methylation of histone tails leads ultimately to epigenetic inheritance patterns.

References

- 1. The language of covalent histone modifications.
- 2. ScienceXpress, [http://www.sciencexpress.org]
- 3. Role of Histone H3 Lysine 9 Methylation in Epigenetic Control of Heterochromatin Assembly, [http://www.sciencemag.org/cgi/content/abstract/1060118v1]
- 4. The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast.
- 5. The chromodomain protein Swi6: a key component at fission yeast centromeres.