PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Caretakers and gatekeepers

ArticleInfo		
ArticleID	:	4013
ArticleDOI	:	10.1186/gb-spotlight-20010314-01
ArticleCitationID	\Box	spotlight-20010314-01
ArticleSequenceNumber	\Box	84
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2001–03–14 OnlineDate : 2001–03–14
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Cellular gatekeepers include the proteins that regulate cell-cycle progression in response to DNA damage, whereas DNA repair pathways function as genomic caretakers. The p53 and ATM (ataxia-telangiectasia-mutated) proteins behave as cellular gatekeepers, while the non-homologous end-joining (NHEJ) DNA repair machinery acts as a genomic caretaker. NHEJ factors include Ku70, Ku80 and the DNA-PK enzyme, plus XXRC4 and DNA Ligase IV (Lig4), which function in ligation. In the March 13 Proceedings of the National Academy of Science, Sekiguchi *et al.* report that mutation of the *ATM* gene rescues the embryonic lethality and neuronal apoptosis associated with *Lig4* deficiency in mice (*Proc Natl Acad Sci USA* 2001, **98:**591-596). *ATM* deficiency failed to relieve defects in lymphocyte development due to the absence of *Lig4*. These results are similar to observations in *Lig4-/-p53-/*-mice. *ATM* deficiency also increased the genome instability, senescence and growth defects of *Lig4*-deficient fibroblasts. Surprisingly, Sekiguchi *et al.* report that deletion of *ATM* caused early embryonic lethality when combined with mutations in *Ku* or *DNA-PK* genes. They conclude that the DNA-PK holoenzyme must have an additional NHEJ-independent function.

References

- 1. Cancer-susceptibility genes. Gatekeepers and caretakers.
- 2. DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis.
- 3. Proceedings of the National Academy of Science, [http://www.pnas.org]
- 4. DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway.

This PDF file was created after publication.