PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

This amoeba is a cheater

ArticleInfo		
ArticleID	:	3876
ArticleDOI	:	10.1186/gb-spotlight-20001228-01
ArticleCitationID	\Box	spotlight-20001228-01
ArticleSequenceNumber	\Box	313
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2000–12–28 OnlineDate : 2000–12–28
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells

Email: wells@biotext.com

Dictyostelium discoideum are usually haploid, asexually dividing, unicellular amoebae, but when starved they aggregate to form a slug that then differentiates to form a sterile stalk supporting viable spore cells. In the 21/28 December Nature Strassmann et al. find that Dictyostelium of different genotypes can combine to form a chimeric fruiting body, and that half of the chimeras contain cells that cheat to maximize their contribution to the spore cell compartment (Nature 2000, 408:965-967). The more effective cheaters are not biased to form more spore cells in all situations. When these cheaters are induced to form slugs and fruiting bodies of a single genotype, they do not make greater numbers of spores versus stalk cells, suggesting that in the chimeras a special cheating process is being activated. This makes Dictyostelium an excellent model system for studies of altruism and cheating, but may complicate developmental studies, as many between-cell signaling events may involve deception and manipulation.

References

- 1. *Nature*, [http://www.nature.com/nature/]
- 2. Dictyostelium amoebae lacking an F-box protein form spores rather than stalk in chimeras with wild type.