PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Immunizing against Alzheimer's

ArticleInfo		
ArticleID	:	3872
ArticleDOI	:	10.1186/gb-spotlight-20001222-02
ArticleCitationID	:	spotlight-20001222-02
ArticleSequenceNumber	:	309
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2000–12–22OnlineDate: 2000–12–22
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells Email: wells@biotext.com

Abnormal processing and deposition of amyloid- β peptide (A β) in extracellular plaques are thought to be central to the pathogenesis of Alzheimer's disease. Immunization with A β reduces the amount of brain amyloid, and now in the 21/28 December Nature, Janus *et al.* (*Nature* 2000, **408**:979-982) and Morgan *et al.* (*Nature* 2000, **408**:982-985) report that similar immunization protocols also reduce the learning deficit seen in mouse models of Alzheimer's disease.

Janus *et al.* immunize at 6, 8, 12, 16 and 20 weeks with A β in β -pleated sheet conformation, and test using a Morris water maze at 11, 15, 19 and 23 weeks. The immunized mice perform significantly better than non-immunized littermates at 11 and 23 weeks, when two discrete increases in amyloid burden are detected in non-immunized mice. Immunization reduces the amount of dense-cored A β plaques by approximately 50%, suggesting that the elicited antibodies may inhibit assembly of A β fibrils rather than clear all A β .

Morgan *et al.* immunize monthly before assaying at 15.5 months using a radial-arm water maze that tests working memory. (Chen *et al.*, reporting in the same issue of Nature, find that only the performance of tasks that require this sort of working or episodic-like memory are correlated with the age-related increase in plaque burden (*Nature* 2000, **408**:975-979).) At 15.5 months the immunized mice are better than non-immunized mice on the fourth trial, and as good as wild-type mice by the fifth trial. In contrast the mice in the Janus *et al.* study never improved to reach the performance levels of wild-type mice. Morgan *et al.*, the group not affiliated with a pharmaceutical company, "strongly recommend testing" of A β immunization for both treatment and prevention of Alzheimer's disease.

Further links to $A\beta$ come in the 22 December Science. Ertekin-Taner *et al.* use plasma $A\beta42$ levels as a surrogate for late-onset Alzheimer's disease (LOAD), and come up with a locus on chromosome 10 linked to the disease (*Science* 2000, **290**:2303-2304). Myers *et al.* confirm this observation using an analysis of affected sibling pairs, and find a significance level that suggests the new locus is as important as the E4 allele of apolipoprotein E, the only known genetic risk factor for LOAD (*Science* 2000, **290**:2304-2305). The new locus is near, but apparently distinct from, the locus identified by Bertram *et al.* (*Science* 2000, **290**:2302-2303). The latter locus is very near or identical to the gene for insulindegrading enzyme, which may help degrade and clear A β .

References

- 1. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse.
- 2. Nature, [http://www.nature.com/nature/]
- 3. Science, [http://www.sciencemag.org/]

4. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium.

5. Exploring the etiology of Alzheimer disease using molecular genetics.

This PDF file was created after publication.