PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Slimy catenins

ArticleInfo		
ArticleID	:	3857
ArticleDOI	:	10.1186/gb-spotlight-20001211-01
ArticleCitationID	:	spotlight-20001211-01
ArticleSequenceNumber	:	294
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2000–12–11OnlineDate: 2000–12–11
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells Email: wells@biotext.com

In the 7 December Nature Grimson *et al.* report that, like metazoans, the slime mold *Dictyostelium discoideum* has a β -catenin involved both in signaling and in forming adherens junctions (*Nature* 2000, **408**:727-731). The junctions form after the unicellular amoebae are starved and aggregate into a fruiting body, with junctions present only between cells at a constriction near the top of the stalk tube. In mutants lacking the β -catenin, most of the fruiting bodies collapse, and there is an additional signaling defect: a cell-autonomous failure to induce certain aspects of prespore gene expression. The existence of the *Dictyostelium* protein and a related protein in the plant *Arabidopsis thaliana* suggest that evolution of β -catenin may have been a prerequisite for all multicellular development.

References

- 1. Nature, [http://www.nature.com/nature/]
- 2. Functional interaction of beta-catenin with the transcription factor LEF-1.
- 3. The molecular constituents of intercellular junctions.