PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

A variant histone controls transcription

ArticleInfo		
ArticleID	:	3831
ArticleDOI	÷	10.1186/gb-spotlight-20001115-02
ArticleCitationID	:	spotlight-20001115-02
ArticleSequenceNumber	÷	268
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	÷	2
ArticleHistory	·	RegistrationDate: 2000–11–15OnlineDate: 2000–11–15
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	·	
ArticleContext	:	130591111

The histone originally dubbed H2A.F (for funny) but now called H2A.Z is variant but conserved: it differs significantly from the major histone H2A proteins but shows greater conservation between species than they do. H2A.Z is essential (at least in flies), its expression is tissue-specific, and it is localized to only some regions of fly polytene chromosomes, but its function has remained elusive. In the October 27 Cell Santisteban *et al.* find that inclusion of H2A.Z in chromatin regulates transcription (*Cell* 2000, **103**:411-422). They isolate the yeast H2A.Z as a multicopy suppressor of a histone H4 mutation. Depletion of histones usually makes gene transcription less dependent on the SNF/SWI chromatin remodeling complex, but deletion of yeast H2A.Z makes cells highly dependent on this complex. SNF/SWI and H2A.Z appear to act together, for example at the *PHO5* gene, where H2A.Z binds specifically in the promoter region. Thus H2A.Z may create higher order chromatin domains that are poised for activation.

References

1. Conservation of intron position indicates separation of major and variant H2As is an early event in the evolution of eukaryotes.

2. Cell, [http://www.cell.com/]

This PDF file was created after publication.