PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Many ways to be minimal

ArticleInfo		
ArticleID	:	3800
ArticleDOI	:	10.1186/gb-spotlight-20001017-02
ArticleCitationID	:	spotlight-20001017-02
ArticleSequenceNumber	:	237
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2000–10–17OnlineDate: 2000–10–17
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells Email: wells@biotext.com

The genome of *Mycoplasma genitalium* is so far the smallest discovered for any free-living organism, so it has been used as a starting point for defining a minimal genome. Transposon mutagenesis and comparison with a second mycoplasma have further narrowed down the list of genes. Now Glass *et al.* announce the sequencing of a third mycoplasma, the mucosal pathogen *Ureaplasma urealyticum*, in the 12 October Nature (*Nature* 2000, **407**:757-762). Their results suggest that there is more than one version of a minimal genome, even for organisms living in very similar environments. Although *U. urealyticum* has homologs for most of the *M. genitalium* genes that have been proposed to be essential, it lacks the heat shock protein/chaperonins GroEL and GroES (found in all other sequenced microbial genomes) and the cell division protein FtsZ (absent only in a single archaeon and in chlamydia, which divide in host vacuoles). Key energy metabolism genes are also missing, presumably replaced by *U. urealyticum*'s unusual ATP-generating system, which involves the hydrolysis of urea by urease to generate an electrochemical gradient.

References

- 1. The minimal gene complement of Mycoplasma genitalium.
- 2. Global transposon mutagenesis and a minimal Mycoplasma genome.

3. Comparative analysis of the genomes of the bacteria *Mycoplasma pneumoniae* and *Mycoplasma genitalium*.

4. Nature, [http://www.nature.com/nature/]