PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Intracellular localization gives first clue to protein function

ArticleInfo		
ArticleID	:	3791
ArticleDOI	:	10.1186/gb-spotlight-20001006-02
ArticleCitationID	:	spotlight-20001006-02
ArticleSequenceNumber	:	228
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2000–10–06 OnlineDate : 2000–10–06
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Going from gene sequence to protein function presents a great challenge to genome biology. In the September 15 EMBO Reports, Simpson *et al.* suggest that the systematic identification of subcellular localization can significantly enhance our ability to assign functions to unknown ORFs (*EMBO Reports* 2000, 1:287-292). Simpson et al. outline a strategy for such an approach. They adapted the Gateway cloning system to allow rapid, directional cloning of ORFs by recombination, and generate amino- and carboxy- terminal GFP (green fluorescence protein) fusions. The authors used protein localization in living cells to follow the GFP-tagged proteins and to categorize clones for further study. More than 80% of proteins localized to recognized structures such as the cytosol (18%), nucleus (12%), secretory pathway (28%), mitochondria (5%) or the cytoskeleton (3%). Combining compartmentalization data with bioinformatic analysis of the cDNA sequences offers a promising strategy for predicting protein function. The authors stress that this approach has features amenable to scale-up for high-throughput analysis - it is rapid, efficient and has potential for automation.

References

- 1. EMBO Reports, [http://www.embo-reports.oupjournals.org/]
- 2. Molecular Genome Analysis, [http://www.dkfz-heidelberg.de/abt0840/GFP]
- 3. Protein interaction mapping in *C. elegans* using proteins involved in vulval development.
- 4. Protein traps: using intracellular localization for cloning.

This PDF file was created after publication.