PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Many cloned mice

ArticleInfo		
ArticleID	:	3779
ArticleDOI	:	10.1186/gb-spotlight-20000925-03
ArticleCitationID	:	spotlight-20000925-03
ArticleSequenceNumber	:	216
ArticleCategory	÷	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2000-09-25OnlineDate: 2000-09-25
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

The nuclei used in cloning may not go through all the changes that normally reset a gamete nucleus, and thus there have been fears of premature aging and shortened telomeres (an age-related phenomenon) in cloned animals. Indeed, shortened telomeres have been seen in cloned sheep, although the reverse is true for cloned cows. Now in the 21 September Nature Wakayama *et al.* report that mice reiteratively cloned for up to six generations show no signs of premature aging or shortening of telomeres (*Nature* 2000, **407**:318-319). The success rate of cloning does drop in later generations, however, meaning that the team had to inject a total of 3920 enucleated oocytes over the multiple generations to come up with a single sixth generation clone. After all that effort and technology a more basic biology took over, as the lone survivor was cannibalized by its foster mother.

References

- 1. Analysis of telomere lengths in cloned sheep.
- 2. Extension of cell life-span and telomere length in animals cloned from senescent somatic cells.
- 3. Nature, [http://www.nature.com/nature/]