PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Can't get there from here

ArticleInfo		
ArticleID	:	3742
ArticleDOI	:	10.1186/gb-spotlight-20000814-01
ArticleCitationID	:	spotlight-20000814-01
ArticleSequenceNumber	:	179
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2000-08-14OnlineDate: 2000-08-14
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells
Email: wells@biotext.com

In the 10 August Nature, Burch and Chao find that two populations of an RNA virus, derived from a single ancestral phage, repeatedly evolve towards different fitness maxima (*Nature* 2000, **406**:625-628). The average fitness of one of the final phage populations is actually lower than that of the starting clone, suggesting that the original individual was at the peak of a local maximum of fitness. The existence of these different and non-overlapping solutions to maximizing fitness suggests that the evolvability of an RNA virus is determined by which advantageous genotypes are within its mutational neighborhood.

References

1. Nature magazine, [http://www.nature.com/nature/]

This PDF file was created after publication.