PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Profiles of metastasis

ArticleInfo		
ArticleID	:	3739
ArticleDOI	:	10.1186/gb-spotlight-20000807-02
ArticleCitationID	:	spotlight-20000807-02
ArticleSequenceNumber	:	176
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	·	RegistrationDate: 2000-08-07OnlineDate: 2000-08-07
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells Email: wells@biotext.com

In the 3 August Nature Clark *et al.* use DNA microarrays to find genes that are up- or down-regulated in metastatic (versus non-metastatic) melanoma cells (*Nature* 2000, **406**:532-535). Variable results suggest that there is more than one way of becoming metastatic, but three genes - encoding fibronectin, thymosin β 4, and RhoC - come up in three independent samples from both human and mouse cells. Extracellular fibronectin probably lays down a permissive track for moving cells, and the actin-buffering thymosin β 4 probably aids cell movement. RhoC is more of a surprise: Clark *et al.* show that overexpressing RhoC in non-metastatic cells is sufficient to make them metastatic, and a dominant inhibitory mutant inhibits metastasis. Bittner *et al.* analyze patterns of gene expression in samples of melanoma cells and find that two distinct clusters robustly emerge from the analysis (*Nature* 2000, **406**:536-540). Melanomas from the larger expression cluster show reduced motility and invasive ability, and initial patient data, although not yet statistically significant, suggest that the group may have better survival prospects.

References

1. Nature magazine, [http://www.nature.com/nature/]