PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Breeding a better vector

ArticleInfo		
ArticleID	:	3738
ArticleDOI	:	10.1186/gb-spotlight-20000807-01
ArticleCitationID	:	spotlight-20000807-01
ArticleSequenceNumber	:	175
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	·	RegistrationDate: 2000-08-07OnlineDate: 2000-08-07
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

DNA shuffling (also called molecular breeding) generates variation by random fragmentation of a cloned gene followed by reassembly of the fragments in a self-priming polymerase reaction. The result is a recombination of overlapping fragments that have different mutations or come from different, naturally occurring homologous genes. In the August Nature Genetics Soong *et al.* apply this technique to a pool of six different murine leukemia virus envelope sequences to derive a new virus that can, unlike its parents, infect Chinese Hamster Ovary (CHOK1) cells (*Nat. Gen.* 2000, **25**:436-439). Similar selections on clinically relevant cell types may yield improved vectors for gene therapy.

References

- 1. Rapid evolution of a protein in vitro by DNA shuffling.
- 2. DNA shuffling of a family of genes from diverse species accelerates directed evolution.
- 3. Nature genetics, [http://www.nature.com/ng/]