PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

The two chromosomes of cholera

ArticleInfo		
ArticleID	:	3737
ArticleDOI	:	10.1186/gb-spotlight-20000804-01
ArticleCitationID	:	spotlight-20000804-01
ArticleSequenceNumber	:	174
ArticleCategory		Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2000–08–04 OnlineDate : 2000–08–04
ArticleCopyright		BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext		130591111

William Wells

Email: wells@biotext.com

In the 3 August Nature, The Institute for Genomic Research (TIGR) has unveiled its twentieth completed bacterial sequence (Heidelberg *et al.*, *Nature* 2000, **406**:477-484). The complete sequence of the cholera-causing bacterium *Vibrio cholerae* consists of the 2.96 Mbp chromosome 1 and the 1.07 Mbp chromosome 2. Chromosome 1 contains a standard bacterial origin of replication and the vast majority of the bacterium's essential genes, whereas chromosome 2 has an origin of replication and various genes that are usually associated with plasmids, and thus may have started life as a megaplasmid. The two chromosome have, however, coexisted for a long time based on their almost identical G+C content. Moreover, chromosome 2 now has several essential genes, and a number of regulatory proteins control genes on both chromosomes. The bacterium's strategies for coordinating replication and segregation of the two chromosomes remain to be established.

References

- 1. Nature magazine, [http://www.nature.com/nature/]
- 2. The Institute for Genomic Research, [http://www.tigr.org]