PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Rice - the prequel

ArticleInfo		
ArticleID	:	3729
ArticleDOI	:	10.1186/gb-spotlight-20000719-01
ArticleCitationID	:	spotlight-20000719-01
ArticleSequenceNumber	:	166
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2000-07-19OnlineDate: 2000-07-19
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells Email: wells@biotext.com

Researchers hoping to decipher the first complete genome sequence of a plant fear the lengthy clusters of repeated transposon sequences present in many plant genomes. But in the July issue of Genome Research, Mao *et al.* report promising news for the international consortium tackling the rice genome (*Genome Res.* 2000, **10**:982-990). After sequencing 73,000 DNA fragments distributed through the rice genome (a total of nearly 50 Mb), Mao *et al.* find that less than 10% of the sequences contain transposons. Thus transposons should not interfere substantially with the completion of the rice genome sequence. Mao *et al.* also confirm that transposons called miniature inverted-repeat transposable elements (MITEs) are associated with genes, and thus provide a good way to spot genes in the rice and possibly other plant genomes.

References

1. Genome research, [http://www.genome.org/]