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Abstract

Affinity capture of DNA methylation combined with high-throughput sequencing strikes a good balance between the
high cost of whole genome bisulfite sequencing and the low coverage of methylation arrays. We present BayMeth, an
empirical Bayes approach that uses a fully methylated control sample to transform observed read counts into regional
methylation levels. In our model, inefficient capture can readily be distinguished from lowmethylation levels. BayMeth
improves on existing methods, allows explicit modeling of copy number variation, and offers computationally
efficient analytical mean and variance estimators. BayMeth is available in the Repitools Bioconductor package.

Background
DNA methylation (DNAme) is a critical component in
the regulation of gene expression, is precisely controlled
in development and is known to be aberrantly distributed
in many diseases, such as cancer and diabetes [1,2]. In
differentiated cells, DNAme occurs primarily in the CpG
dinucleotide context. For CpG-island-associated promot-
ers, increases in DNAme (i.e. hypermethylation) induce
repression of transcription, while hypomethylated pro-
moters may be transcriptionally active. In cancer, tumor
suppressor gene promoters are frequently hypermethy-
lated, and therefore silenced, while hypomethylation can
activate oncogenes, which collectively can drive disease
progression [3,4]. The detection and profiling of such
abnormalities across cell types and patient cohorts is of
great medical relevance, both for our basic understanding
of how the disease manifests but also for the opportunities
of translating this knowledge to the clinic [5]. Epigenetic
patterns can be used as diagnostic markers, predictors of
response to chemotherapy and for understanding mech-
anisms of disease progression [6-9]. Acquired epigenetic
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changes are potentially reversible, which provides impor-
tant therapeutic opportunities; notably, the US Food and
Drug Administration has approved at least four epigenetic
drugs and others are in late-stage clinical trials [8].
Four classes of methods are available to profile DNAme

genome-wide: chemical conversion, endonuclease diges-
tion, direct sequencing and affinity enrichment. Combi-
nations of techniques are also in use, such as reduced rep-
resentation bisulfite sequencing (RRBS) [10]. For recent
reviews of the available platforms, see [11-13]. Treatment
of DNA with sodium bisulfite is the gold standard, giving
a single-base readout that preserves methylated cytosines
while unmethylated cytosines are converted to uracil
[14]. This approach can be coupled with high-throughput
sequencing, e.g. whole genome bisulfite sequencing
(WGBS), or a ‘genotyping’ microarray (e.g. Illumina
Human Methylation 450k array, San Diego, USA [15]).
BecauseWGBS is genome-wide, it inefficiently reveals the
methylation status for low CpG density regions [16] and
is cost-limiting for larger cohorts; however, recent statisti-
cal frameworks allow coverage to be traded for replication
[17] and sequencing targeted regions may be a plausible
way to increase efficiency [18,19]. Meanwhile, Illumina
arrays cover less than 2% of genomic CpG sites and
are only available for profiling human DNA, while enzy-
matic digestion approaches are limited by the location
of specific sequences. There is considerable excitement
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surrounding third-generation sequencing technologies
that directly infer methylation status, but these are not
yet readily available and generally offer lower throughput
[20,21].
An attractive alternative that provides a good trade-

off between cost and coverage, albeit at lower resolution,
is affinity capture of methylated DNA in combination
with high-throughput sequencing (e.g. methylated DNA
immunoprecipitation sequencing (MeDIP-seq) [6,22]).
Using affinity capture with antibodies to 5-methylcytosine
or methyl-CpG binding domain-based (MBD) proteins,
subpopulations of methylated DNA are captured, pre-
pared, sequenced and mapped to a reference genome (see
Laird [11]). Åberg et al. [23] studied the use of MBD
sequencing (MBD-seq) for methylome-wide association
studies with 1,500 case–control samples, and proved the
potential of MBD-seq as a cost-effective tool in large-scale
disease studies. A recent comparative study highlighted
that affinity capture methods can uncover a significantly
larger fraction of differentially methylated regions than
the Illumina 450k array [24]. With appropriate normaliza-
tion, the density of mapped reads can be transformed to
a quantitative readout of the regional methylation level.
However, the capability of these procedures to interrogate
a given genomic region is largely related to CpG density,
which influences the efficiency of capture and can dif-
fer from protocol to protocol [16,25,26]. Thus, statistical
approaches are needed.
Several methods have been proposed to estimate

DNAme from affinity-based DNAme data. For example,
MBD-isolated genome sequencing, a variant of MBD-
seq, assumes a constant rate of reads genome-wide and
uses a single threshold to binarize as methylated or not
[27]. State-of-the-art methods, such as Batman [22] and
MEDIPS [28], build a linear model relating read den-
sity and CpG density, which is then used to normalize
the observed read densities. For MeDIP-seq data, the
algorithms had similar estimation performance [28],
though MEDIPS was considerably more time-efficient.
A new tool called BALM uses deep sequencing of MBD-
captured populations and a bi-asymmetric-Laplace model
to provide CpG-specific methylation estimates [29]. All
methods, however, suffer from the same limitations:
low capture efficiency cannot easily be distinguished
from low methylation level; and, other factors that
directly affect read density, such as copy number varia-
tion (CNV), are not easily taken into account. For CNV
correction, a few possibilities have emerged, such as
omitting known regions of amplification [6], adjusting
read densities manually [30] and adjusting using the
read density from an input sample [29]. Very recently, a
method based on combining profiles from MeDIP/MBD-
seq and methylation-sensitive restriction enzyme
sequencing for the same samples with a computational

approach using conditional random fields appears promi-
sing [31].
We present a novel empirical Bayes model called

BayMeth, based on the Poisson distribution, that explicitly
models (affinity capture) read densities of a fully methy-
lated control (e.g. DNA treated with SssI CpG methyl-
transferase) together with those from a sample of interest.
Here, SssI data provide the model an awareness of where
in the genome the assay can detect DNAme and themodel
allows integration of CNV and potentially other estimable
factors that affect read density. We have derived an ana-
lytic expression for the mean methylation level and also
for the variance. Interval estimates, such as credible inter-
vals, can be computed using numerical integration of the
analytical posterior marginal distributions. Using MBD-
seq for human lung fibroblast (IMR-90) DNA, where ‘true’
methylation levels are available from WGBS, we found
favorable performance compared to existing approaches
in terms of bias, mean-squared error, Spearman correla-
tion and coverage probabilities. We found that improved
performance can even be observed when ignoring SssI
data. Model-based SssI correction, however, does not
only lead to better performance, but, in addition, data
originating from different capture platforms can be com-
pared more easily by propagating the platform-specific
uncertainty. Using MBD-seq data for human prostate
carcinoma (LNCaP) cells, we showed that directly inte-
grating CNV data provides additional performance gains.
The performance with historical data, where no matched
SssI sample is available, was demonstrated using data
for embryonic stem cells, and colon tumor and normal
samples from [32].

Results and discussion
BayMeth: A Bayesian framework for translating read
densities into methylation levels
DNAme data can be obtained using MBD-seq or a sim-
ilar affinity enrichment assay. Let yiS and yiC denote the
observed number of (uniquely) mapped reads for genomic
regions i = 1, . . . , n for the sample of interest and the SssI
control, respectively. Throughout this paper, we use non-
overlapping regions (mostly of width 100bp) that have at
least 75% mappable bases (see Materials and methods).
Let

yiS|μi, λi ∼ Poisson
(
f × cni

ccn
× μi × λi

)
, and (1)

yiC |λi ∼ Poisson (λi) , (2)

with λi > 0 and 0 < μi < 1. Here, λi denotes the region-
specific read density at full methylation, μi the regional
methylation level and f > 0 represents the (effective)
relative sequencing depth between libraries (i.e. a normal-
ization offset). An approximately linear relation between
the copy number state and MBD-seq read density has
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been established [33]. Hence, if needed, we include a mul-
tiplicative offset cni/ccn in our model formulation, where
cni denotes the copy number state at region i and ccn is a
cell’s most prominent CNV state (e.g. two in normal cells).

Closed-form posterior methylation quantities
In a Bayesian framework, prior distributions are assigned
to all parameters. The methylation level (μi) has support
from zero to one. Potential priors include mixtures of beta
distributions or a Dirac-Beta-Dirac mixture. In the latter,
a beta distribution is combined with point masses placed
on zero and on one. The mixture weights can be either
unknown or fixed. By default, BayMeth assumes a uni-
form prior distribution for μi (i.e., a beta distribution with
both parameters set to 1). For the region-specific den-
sity, we assume a gamma distribution, i.e. λi ∼ Ga (α,β)

using the shape α > 0 and rate β > 0 hyperparameters,
which are determined in a CpG-dependent manner (see
next section). To make inferences for the regional methy-
lation levels, μi, we integrate out λi from the posterior
distribution:

p(μi|yiS, yiC)=
∫ ∞

0
p (λi,μi|yiS, yiC) dλi

=
∫ ∞

0

p (yiS|λi,μi)p (yiC |λi)p (λi)p (μi)

p (yiS, yiC)
dλi

Notably, p (yiS, yiC) can be calculated analytically [34], so
that the marginal posterior distribution:

p (μi|yiS, yiC) = μ
yiS
i
W

(
1 − E (1 − μi)

β + 1 + E

)−(α+yiS+yiC)

,

(3)

is given in closed form with

E = f · cni
ccn

and

W = 1
yiS + 1

× 2F1
(
yiS + yiC + α, 1; yiS + 2;

E
β + 1 + E

)

where 2F1( ) is the Gauss hypergeometric function (see
page 558 of [35]). The posterior mean and the vari-
ance are analytically available (see Additional file 1) and
therefore efficient to compute. Credible intervals, which
are quantile-based or use the highest posterior density
(HPD), can be computed from equation (3). Wald cred-
ible intervals are computed on the logit scale, where
logit (μi) = log (μi/ (1 − μi)), and then transformed
back. These intervals are based on assuming asymp-
totic normality of the logit methylation estimate. The
95% Wald interval on the logit scale is computed from
logit

(
μ̂i

) ± 1.96 · σ̂i, where σ̂i is the standard error esti-
mate of logit

(
μ̂i

)
. For detailed statistical derivations, also

including more general prior distributions for μi, refer to
Additional file 1.

Empirical Bayes for prior hyperparameter specification
Our method takes advantage of the relation between
CpG density and read depth to formulate a CpG-
density-dependent prior distribution for λi (and pos-
sibly unknown parameters in the prior distribution of
μi). Taking CpG density into account, the prior should
stabilize the methylation estimation procedure for low
counts and in the presence of sampling variability. All
unknown hyperparameters are determined in a CpG-
density-dependent manner using empirical Bayes. For
each genomic bin of a predetermined size, e.g., 100 bp,
we determine the weighted number of CpG dinucleotides
within an enlarged window, say 700 bp, around the center
of the bin (see Materials and methods and MEDME [36]).
Each region is classified based on its CpG density into one
of K(= 100) non-overlapping CpG density intervals (see
x-axis tick marks in Additional file 2: Figure S1).
For each class separately, we derive the values for

the hyperparameters under an empirical Bayes frame-
work using maximum likelihood. Both read depths, from
the SssI control and the sample of interest, are thereby
taken into account, since λi is a joint parameter affect-
ing both. We end up with K parameter sets. To illus-
trate the (known) relation between SssI read count and
CpG density, we considered only the SssI Poisson model
(equation (2)) and derived the prior predictive distribution
by integrating λi out. This results in a negative binomial
distribution for each CpG class (see Figure 1, which uses
SssI data from [37] that are later used in the analysis of the
IMR-90 cell line).

SssI-free BayMeth
Although we recommend collecting at least a single SssI
sample under the same protocol as the data of interest,
BayMeth can, in principle, be run without a SssI-control
sample. The statistical framework then only involves the
Poissonmodel for the sample of interest (equation (1)) and
no longer borrows strength from the information included
in the SssI-control sample (equation (2)). The same model
is used in the analysis of under-reported count data in
economics [34,38,39], where it is assumed that the num-
ber of registered purchase events under-reports the actual
purchase rate. According to Fader and Hardie [34], the
parameters λi and μi are identifiable assuming that the
gamma and beta prior distributions are able to capture
unobserved heterogeneity in the read density rate and
the methylation level. As in the framework with SssI
data, parameters for the gamma prior distributions of the
region-specific read density λi can still be determined in
a CpG-density-dependent manner using empirical Bayes;
however, no information can be borrowed from the fully



Riebler et al. Genome Biology 2014, 15:R35 Page 4 of 19
http://genomebiology.com/2014/15/2/R35

0

0

20 40 60 80

20

40

60

80

CpG density

S
ss

I d
ep

th

low

high

Figure 1 SssI read depth versus CpG density together with prior predictive distribution. Smoothed color density representation of SssI read
depth versus CpG density together with the mean (green solid line) and 2.5% and 97.5% quantiles (green dashed lines) of the prior predictive
distribution for the SssI control sample. The parameters for this negative binomial distribution were derived using an empirical Bayes approach by
maximizing the joint marginal distribution of the IMR-90 and SssI control counts stratified into 100 CpG density groups. Only counts from bins with a
mappability larger than 0.75 were considered.

methylated control. Furthermore, the determination of
the normalizing offset f is more involved. Interpreta-
tion moves from the (effective) relative sequencing depth
between libraries to the number of bins potentially ‘at risk’
of beingmethylated in the sample of interest. Here, we fix f
at the 99% quantile of the number of reads. The results for
the posterior mean and variance of the methylation level
change accordingly (see Additional file 1).

Analysis of affinity capture methylation data with a
matched SssI sample
For the following, we used BayMeth to affinity capture
methylation data. We collected a SssI-control sample
under the same conditions (e.g. same elution protocol)
used for the samples of interest. Hence, both data compo-
nents are matched.

BayMeth improves estimation and provides realistic
variability estimates
To take advantage of the single-base-resolution high-
coverage methylome obtained using WGBS by Lister et
al. [40], we generated IMR-90 MBD-seq data under the
same protocol as our previously published SssI MBD-seq
dataset [37], i.e. using a single fraction with a high salt elu-
tion buffer (MethylMiner™). We applied BayMeth to chro-
mosome 7, which consists of 1,588,214 non-overlapping
bins of width 100 bp. Only bins with at least 75% map-
pable bases were included, so we analyzed 1,221,753 bins
(approximately 77%).
We ran BayMeth in two configurations: (1) incorpo-

rating SssI information and assuming a uniform prior
between zero and one for the methylation parameter

and (2) ignoring SssI information and assuming a Dirac-
Beta-Dirac mixture prior distribution for the methylation
parameter. That means we set a point mass on zero and
on one, giving each a prior weight of 10%. The parame-
ters of the central beta component were assumed to be
unknown. The normalizing offset f = 0.581 for con-
figuration 1 was found by calculating a scaling factor
between highly methylated regions in IMR-90 relative
to the SssI control (see Materials and methods and
Additional file 2: Figure S2). The prior parameters for
the gamma distributions and the parameters of the beta
distribution in configuration 2 were determined by empir-
ical Bayes, as discussed above (see also further details in
Materials and methods).
We compared the results from BayMeth, both ignor-

ing and taking advantage of the SssI control, to those
obtained from Batman [22],MEDIPS [28] and BALM [29].
To provide plausible uncertainty estimates with Batman,
we increased the default number of generated samples
from 100 to 500. The WGBS data, here considered to be
the ‘truth’ (at suitable depth), and the CpG-specific BALM
methylation estimates were collapsed into 100-bp bin esti-
mates (see Materials and methods) to match the estimates
from MEDIPS, Batman and our approach. For about 53%
(645,451) of the analyzed bins, no WGBS data were avail-
able (largely due to the lack of CpG sites). For 17,259 bins,
no methylation estimates were provided by Batman, so
that in total, algorithm comparisons were conducted on
the remaining 559,043 bins.
The behavior of BayMeth (including SssI-information)

and Batman is illustrated using an example region of
chromosome 7 (see Figure 2A).WGBS levels, CpG density
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and read counts per 100-bp region of MBD-seq SssI and
IMR-90 samples are shown. As expected, the number
of reads in the SssI control is related to the CpG den-
sity, whereas the read density in the IMR-90 MBD-seq
data is modulated by both the region-specific density and
the DNAme level. Regions lacking both IMR-90 and SssI
reads suggest inefficient MBD-based affinity capture (e.g.
region a). Figure 2B shows posterior samples from Batman
and inferred posterior distributions from BayMeth. For
region a, Batman’s posterior samples are concentrated
between 0.7 and 1 (mean equal to 0.85). In contrast,
BayMeth returns a mean methylation level of 0.49
together with a large 95%HPD interval (0, 0.94), reflecting
the uncertainty from having no SssI reads sampled. The
credible interval covers nearly the entire interval, reflect-
ing that no reliable estimate can be made for this bin due
to inefficient capture. For regions with no IMR-90 reads
but efficient capture (e.g. region b), both BayMeth and
Batman provide sensible posterior marginal distributions
and low DNAme estimates. If there are a small number
of reads for IMR-90 with efficient capture (e.g. region c),
the BayMeth posterior marginal is more disperse than
Batman’s, while both are close to zero. Region d has a high

number of reads for both samples and a true methylation
level around 0.95. This level is covered by the 95% HPD
region of BayMeth, while it lies outside the density mass
obtained by Batman, which overestimates this region.
Table 1 summarizes the estimation performance for

chromosome 7 using mean bias (difference between the
posterior mean μ̂i and the true value μi), mean of
squared differences (MSE) and Spearman correlation for
BayMeth, BayMeth ignoring SssI-information, Batman,
MEDIPS and BALM. To account for uncertainty in the
WGBS estimates, we applied a threshold on the depth.
We assessed the performance using bins with at least 33
WGBS reads (unmethylated and methylated) correspond-
ing to the 25% quantile of depth in the truth, which gave
414,352 bins. The results were stratified into five groups
according to depth in the SssI control, which should rep-
resent a surrogate of the capture efficiency. The first group
[0, 4] encompasses primarily low-CpG regions that are
not well captured in MBD experiments, while the high
(27, 168] group represents primarily CpG island regions.
On average, Batman tended to overestimate DNAme
while MEDIPS and BALM tended to underestimate it.
BayMeth, in contrast, was almost unbiased. The smaller

BA

Figure 2 Example data tracks for IMR-90 chromosome 7. (A)WGBS methylome (black) per CpG-site and per 100-bp bin (purple) as obtained by
Lister and others [40]. CpG density (light blue), and read counts for SssI-treated DNA (blue) and IMR-90 cells (green) obtained by MBD-seq based on
100-bp non-overlapping bins are shown. Methylation estimates for BayMeth (red) and Batman (orange) are provided. (B) Detailed posterior
information for BayMeth and Batman for four specific bins of panel A (denoted a, b, c and d). For BayMeth, the posterior marginals together with
95% HPD credible intervals (shaded gray) are shown. The posterior samples obtained by Batman are plotted as histograms. For both approaches the
posterior mean is indicated (red dashed line) together with the true WGBS-derived methylation estimate (blue dashed line). chr, chromosome; kb,
kilobase; WGBS, whole genome bisulfite sequencing.
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Table 1 Performance assessment for IMR-90 analysis (chromosome 7)

SssI Number Method Mean Mean of squared Spearman Wald Highest posterior Quantile
depth of bins bias differences correlation density

[0, 4] 305,638 BayMeth -0.04 0.08 0.36 0.74 0.89 0.89

BayMeth (SssI-free) -0.19 0.20 0.23 — — 0.24

Batman 0.22 0.14 0.31 — — 0.43

MEDIPS -0.38 0.26 0.29 — — —

BALM -0.48 0.33 0.32 — — —

(4, 7] 22,196 BayMeth 0.05 0.05 0.65 0.84 0.88 0.87

BayMeth (SssI-free) -0.01 0.08 0.42 — — 0.68

Batman 0.16 0.07 0.61 — — 0.34

MEDIPS -0.23 0.11 0.45 — — —

BALM -0.27 0.15 0.60 — — —

(7, 14] 28,871 BayMeth 0.06 0.04 0.69 0.84 0.86 0.86

BayMeth (SssI-free) 0.02 0.05 0.57 — — 0.79

Batman 0.16 0.07 0.65 — — 0.28

MEDIPS -0.21 0.10 0.49 — — —

BALM -0.21 0.11 0.66 — — —

(14, 27] 28,928 BayMeth 0.05 0.03 0.76 0.81 0.85 0.82

BayMeth (SssI-free) 0.08 0.04 0.72 — — 0.70

Batman 0.15 0.06 0.73 — — 0.23

MEDIPS -0.20 0.09 0.59 — — —

BALM -0.15 0.07 0.75 — — —

(27, 168] 28,719 BayMeth 0.02 0.03 0.79 0.73 0.86 0.78

BayMeth (SssI-free) 0.11 0.04 0.77 — — 0.48

Batman 0.11 0.05 0.75 — — 0.20

MEDIPS -0.22 0.10 0.67 — — —

BALM -0.14 0.06 0.76 — — —

Results are shown for bins with a truth depth larger than the 25% quantile (cutoff is 33 reads), stratified into five groups by SssI depth. Shown are the number of bins
per group, mean bias, MSE, Spearman correlation and coverage probabilities at 95% level.

bias in the point estimates obtained by BayMeth was
also reflected in the MSE. For all methods, the MSE
decreased with higher SssI depth, as expected due to
the efficiency of capture. For all depth groups, BayMeth
had the highest correlation with the WGBS estimates,
which increased with higher SssI depth. The SssI-free
version of BayMeth performed comparable to the other
approaches, with slightly smaller bias and MSE; however,
there was a smaller correlation for bins with low SssI
depth.
A smoothed density representation of regional methy-

lation estimates for the highest SssI depth group, namely
(27, 168], plotted for all methods against the true WGBS
methylation levels is shown in Figure 3. Overall, BayMeth
provides the most accurate point estimates. The over-
estimation by Batman and underestimation by MEDIPS
and BALM are obvious, while the BayMeth errors vary
almost symmetrically. Comparing BALM CpG-wise to

WGBS leads to similar conclusions as for the bin-specific
setting (results not shown). The pattern for the SssI-
free BayMeth estimation (i.e. overestimation) is similar to
Batman, whichmay be expected given that no information
was drawn from the SssI sample.
To assess the calibration, we computed coverage prob-

abilities (the frequency that the true methylation value
is captured within a credible interval). Stratified by the
true WGBS methylation level, Figure 4 shows cover-
age probabilities at the 95% level for regions deemed
to be inside or outside a CpG island (Additional file 2:
Figure S1). HPD intervals and quantile-based and Wald-
based credible intervals were computed for BayMeth
while only quantile-based credible intervals were available
for Batman. Coverage probabilities cannot be obtained
from the output fromMEDIPS and BALM. Asmentioned,
Batman tended to underestimate the variance, resulting
in lower coverage probabilities for the WGBS values.
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Figure 3 Regional methylation estimates for IMR-90 chromosome 7. Smoothed color density representation of regional DNAme estimates for
BALM, MEDIPS, Batman, BayMeth and BayMeth ignoring SssI information, plotted against WGBS methylation levels for the 75% of bins with the
largest depth in the truth (cutoff was 33 reads) where the depth in the SssI control was (27,168]. In addition the y = x line (green dashed line) is
shown. Black points indicate outliers. WGBS, whole genome bisulfite sequencing.
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Figure 4 Coverage probabilities stratified by CpG island status and true methylation level. Coverage probabilities (frequency in which the
true value is within a predefined credible interval) at the 95% level are shown for the 75% of bins with the largest depth in the truth (cutoff was 33
reads) for Batman (orange), BayMeth ignoring SssI control information (light red) and BayMeth (red). Three different types of credible intervals
(quantile-based, Wald and HPD) are shown for BayMeth, while for Batman and the SssI-free version of BayMeth only quantile-based intervals are
available. MEDIPS and BALM do not return any uncertainty estimates. The nominal coverage value is indicated (black dashed line) as a reference.
Genomic regions were stratified by CpG density using the threshold of 12.46, which separates CpG islands from non-CpG islands; compare
Additional file 2: Figure S1. Further stratification by the true methylation level as derived from WGBS [40] is provided. HPD, highest posterior density;
WGBS, whole genome bisulfite sequencing.
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In contrast, BayMeth’s coverage probabilities were much
closer to the nominal levels and seemed to be stable across
the stratification. For SssI-free BayMeth, quantile-based
credible intervals were computed and these were gener-
ally better than those provided by Batman (see Table 1
and Figure 4), indicating a more realistic methylation
estimation.
For the same stratification, Additional file 2: Table S1

shows the mean bias for BayMeth, Batman, MEDIPS and
BALM. While the latter two had a low mean bias for bins
where the truth was within [0, 0.2], Batman performed
best for highly methylated bins. BayMeth performed well
for bins where the true methylation level was intermediate
or high. Like Batman, reasonable estimates were obtained
over the whole range of methylation states when consider-
ing bins in CpG islands. When interpreting the mean bias,
the uncertainty around the obtained estimates should be
taken into account and hence the results should be set
into context with Figure 4. Combining bias and calibra-
tion, BayMeth performed well and seems to be better than
the existing approaches.

Copy number variation-aware BayMeth improves estimation
of DNAmethylation for prostate cancer cells
In the following, we illustrate the benefits of directly
integrating CNV information into a cancer MBD-seq
dataset. We applied our methodology to the autosomes
of the LNCaP cell line. To illustrate the reason for this
adjustment, Figure 5 shows the estimated copy number
across chromosome 13 (with many non-neutral regions),
together with tiled MBD-seq read counts. The copy num-
ber estimates were derived using the PICNIC algorithm
for Affymetrix genotyping arrays (seeMaterials andmeth-
ods). Although read densities at a specific genomic region

(again, 100-bp non-overlapping bins) were influenced by
a combination of effects (e.g. DNAme and CpG den-
sity), a relation between CNV and the number of reads
is clearly visible. In particular, a difference in read counts
between regions with four copies and those with smaller
copy numbers is apparent. We adjusted for this bias
through a multiplicative offset cni/ccn, where the promi-
nent state was four copies, i.e., ccn = 4 in equation
(1) (see Additional file 2: Figure S3). This also assumes
that the SssI sample was for a ‘normal’ copy genome. In
addition, regions from this state (cni = 4) were used to
determine the normalizing offset f (here, estimated to be
0.712).
The read depth stratified by copy number state together

with mean and median estimates is shown in Additional
file 2: Figure S4. In particular, for the three most frequent
CNV states (2 to 4), the read densities scale approximately
linearly with CNV (with a slope of 1), which justifies the
structure of ourmultiplicative offset. Copy number offsets
are given in Table 2.
The box plots in Figure 6 illustrate the bias of DNAme

point estimates by integer CNV state (2 to 5) for the
different methods. Here, we used the Illumina Human
Methylation 450k array as the true methylation (see
Materials and methods), since methylation status should
be unaffected by CNV [41]. To emphasize that copy
number class 4 is the most prominent state, we set the
width of the boxes proportional to the percentage of bins
that belong to the corresponding copy number classes.
Because CNV only affects MBD capture for methylated
regions, we restricted this comparison to bins where the
true methylation state is larger than 0.5 and we applied
a threshold of 13 (the median after excluding bins with
a low depth of [0, 4]) to the number of reads in the

Figure 5 Relation between copy number state and regional affinity enrichment. Top: Copy number estimates for the LNCaP cell line obtained
by the PICNIC [55] algorithm for 100-bp bins across human chromosome 13 with a mappability of at least 75%. Bottom: Read counts of affinity
capture sequencing data for the same bins. MB, megabase.
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Table 2 Copy number specific offset

1 2 3 4 5 6 7 8

Combined offset 0.178 0.356 0.534 0.712 0.889 1.067 1.245 1.423

Copy number specific offsets defined as f × cni/ccn derived for 100-bp
non-overlapping bins of LNCaP autosomes, which have a mappability of at least
75%. Note that f is only derived based on bins with the most common copy
number state four.

SssI-control to select for regions where MBD-seq has
good performance. As for the IMR-90 data, MEDIPS and
BALM tended to underestimate while Batman tended
to overestimate. For BayMeth we show four different
approaches as combinations of neglecting CNV or SssI
information. As previously, we used a uniform prior
for the methylation level when taking advantage of the
SssI sample, and a Dirac-Beta-Dirac mixture with fixed
weights (0.1, 0.8, 0.1) but unknown beta parameters in
the SssI-free case. In the SssI-free version the normaliza-
tion offset f was determined as the 99% percentile of the
number or reads for the sample of interest having copy
number state 4, while the reads of all bins were used when
neglecting the CNV information. Without the additional
multiplicative offset (i.e. without cni ≡ ccn) to account for
CNV, BayMeth produced biased estimates, predictably by
CNV state. After including the copy-number-specific off-
set, these copy number specific biases almost disappeared,
though the SssI-free version still produced a slight over-
estimation.
A smoothed scatterplot illustrating the benefits of

including the copy-number-specific offset is shown in

Figure 7 for copy number state 2. In particular, bins
that have been falsely underestimated (due to having two
copies instead of four) have been corrected (see the top-
right panel). Due to overestimation in the SssI-free version
(bottom left), the methylation estimates for copy num-
ber state 2 do not show such a strong bias. Adjusting for
CNV in this case slightly increased the bias (bottom right).
Table 3 shows the mean bias, MSE and Spearman correla-
tion for the different approaches stratified by copy number
state. In all measures, the CNV-aware standard version
of BayMeth (including SssI) performed best. While the
differences in the correlation estimates were small, clear
advantages can be seen in terms of bias and MSE when
compared to Batman, MEDIPS or BALM. In contrast to
the other approaches, the bias andMSE performance esti-
mates are almost constant over the different copy number
states and are close to zero.

Improved correlation acrossmethylation kits on IMR-90 DNA
One potential advantage of the proposed model-based
SssI correction is that data originating from different
capture platforms can be more easily compared. In this
situation, propagation of the uncertainty becomes impor-
tant, since methods to capture methylated DNA have
different CpG-dependent affinities and therefore different
estimation precisions. To demonstrate this, we captured
methylated DNA from IMR-90 and SssI DNA using six
approaches: low, medium and high salt elutions from
MethylCap Kit™, 500 nM and 1,000 nM salt fractions from
MethylMiner™ and MeDIP. Autosomes were analyzed
with BayMeth using specific SssI data for each kit. The
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Figure 6 Bias of LNCaPmethylation estimates compared to 450k array beta values. Box plots for bias (estimated methylation level minus
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Figure 7 Effect of adjusting for CNV for the LNCaP cell line. Smoothed color density representation of methylation estimates for copy number
state 2 derived by BayMeth compared to 450k array beta values. A threshold of 13 was applied for the depth of SssI, which gives 61,969 bins, of
which we have for 18,010 100-bp bins a beta value and BayMeth estimate. In addition the y = x line (green dashed line) is shown. Black points
indicate outliers. Top left: CNV-unaware BayMeth; top right: CNV-aware BayMeth; bottom left: SssI-free and CNV-unaware BayMeth; bottom right:
SssI-free BayMeth. CNV, copy number variation.

derivedM versus A plots (M: log-fold change; A: log-read-
depth) together with the normalizing offsets f obtained
for each sample are shown in Additional file 2: Figure S5.
Unusual high counts were excluded in the derivation of
the prior parameters [42], but methylation estimates were
derived for all bins. For bins where the estimated credi-
ble interval width (HPD) was smaller than 0.4, Figure 8
compares the unnormalized read densities for the six kits
(upper triangle of panels) and the obtained methylation
estimates (lower triangle of panels). Clearly, capture affini-
ties across the six kits vary drastically, and the SssI-based
correction makes the comparison much clearer. In addi-
tion, the SssI data from this collection of platforms could
be combined by other researchers with their in-house
data, assuming similar procedures have been followed (see
Discussion), allowing them to benefit from the SssI-based
read density correction from BayMeth.

Analysis of affinity capture methylation data without a
matched SssI sample
Next, we applied (default) BayMeth to the MethylCap
sequencing data of [32], provided at [43], and referred
to as the ‘Bock’ data. Absolute read densities were avail-
able for (non-overlapping) 50-bp bins for four samples:
HUES6 ES cell line, HUES8 ES cell line, colon tumor
tissue and colon normal tissue (same donor as for the
colon tumor tissue). There were no matched SssI samples
available for these data. To take advantage of BayMeth
in analyzing these data, we used a non-matching SssI
sample, but one chosen to be maximally compatible to
the preparation conditions of the Bock data [32] (i.e.
MethylCap with a low salt concentration of 200 mM
NaCl). Regions from the data available were converted
to hg19 coordinates using liftOver (see Additional file 3
for details). Although there were still slight differences in



Riebler et al. Genome Biology 2014, 15:R35 Page 11 of 19
http://genomebiology.com/2014/15/2/R35

Table 3 Performance assessment for LNCaP analysis by copy number

Copy Number Method Mean bias Mean of squared Spearman
number of bins differences correlation

2 18,010 BayMeth 0.04 0.04 0.78

BayMeth (SssI-free) 0.08 0.05 0.79

BayMeth (CNV-unaware) -0.11 0.06 0.78

BayMeth (SssI-free, CNV-unaware) -0.05 0.05 0.79

Batman 0.03 0.06 0.74

MEDIPS -0.23 0.11 0.76

BALM -0.29 0.16 0.78

3 65,982 BayMeth 0.05 0.04 0.80

BayMeth (SssI-free) 0.09 0.05 0.80

BayMeth (CNV-unaware) -0.01 0.04 0.80

BayMeth (SssI-free, CNV-unaware) 0.05 0.04 0.80

Batman 0.11 0.06 0.77

MEDIPS -0.19 0.09 0.76

BALM -0.20 0.10 0.79

4 256,074 BayMeth 0.05 0.04 0.81

BayMeth (SssI-free) 0.10 0.05 0.81

BayMeth (CNV-unaware) 0.05 0.04 0.81

BayMeth (SssI-free, CNV-unaware) 0.11 0.06 0.81

Batman 0.16 0.08 0.79

MEDIPS -0.17 0.09 0.76

BALM -0.12 0.07 0.80

5 11,790 BayMeth 0.04 0.03 0.83

BayMeth (SssI-free) 0.07 0.05 0.82

BayMeth (CNV-unaware) 0.09 0.04 0.83

BayMeth (SssI-free, CNV-unaware) 0.12 0.06 0.82

Batman 0.18 0.08 0.80

MEDIPS -0.12 0.07 0.80

BALM -0.08 0.05 0.82

Results are shown for 100-bp bins with a mappability of at least 75% stratified into the four most frequent copy number states. A threshold of 13 was applied for the
depth of the SssI-control. Taking SssI information into account a uniform prior for the methylation level was used. In the SssI-free version a Dirac-Beta-Dirac mixture
with weights fixed to 0.1, 0.8 and 0.1 was used. CNV, copy number variation; MSE, mean of squared differences.

the preparation of the samples of interest and the SssI
sample, which arise from the different read lengths (36
bp versus 75 bp, respectively) and read extensions (300
bp versus 150 bp, respectively) used before the read fre-
quencies were calculated, we regard the SssI sample as
a reasonably suitable control for running BayMeth. We
analyzed all autosomes after removing bins that have
no read depth in any of the four samples, leading to
42,955,764 bins. As in the previous analyses, we restricted
our attention to bins that have at least 75% mappable
bases, of which there were 37,013,409 or 86% of all bins.
A detailed description of all data preparation steps and
the data analysis using BayMeth based on the R package
Repitools is given in Additional file 3. We compared

the methylation estimates obtained using BayMeth with
RRBS data available from the Bock study [32]. As in
the methylation kit analysis, we masked unusual high
counts in the derivation of the prior parameters as
they sometimes cause problems in the numerical opti-
mization routine; however, methylation estimates were
derived for more than 99.5% of these masked bins. Inter-
estingly, several high count regions could be explained
by unannotated high copy number regions; see Pickrell
et al. [42].
Methylation estimates were obtained for about 37 mil-

lion bins each of width 50 bp, though RRBS estimates
were only available for approximately 4% of these bins.We
assessed the performance of BayMeth using bins where
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Figure 8 Comparison of raw IMR-90 data andmethylation estimates obtained by different methylation kits. Genomic bins (100 bp) with a
mappability larger than 75% for which the predicted HPD credible interval width was smaller than 0.4 were selected. For these bins the upper
triangle of panels shows the smoothed color density (from blue for low density to red for high density) of the raw counts and the lower triangle of
panels shows the estimated methylation levels obtained by different methylation kits against each other. The number of bins is given in white in the
panels in the lower triangle.

the depth in the RRBS was larger than 20. Furthermore,
we focused on bins where we believe in the SssI con-
trol, that means where the read depth is at least 10.
Figure 9 shows regionalmethylation estimates obtained by
BayMeth compared to RRBS-derived methylation levels
for all four samples of interest where the correspond-
ing posterior standard deviation was smaller than 0.15.
In particular, low methylation levels were predicted well

for all samples. While high methylation levels were partly
underestimated by BayMeth for the human embryonic
stem cell line HUES8, estimates for HUES6, colon tumor
and color normal tissue reproduce the true methylation
for all levels. Although, in the latter two, slight overesti-
mation is visible. This was partly caused by bins for which
there was a low read depth in SssI but extreme depth
in the sample of interest. BayMeth predicted these bins



Riebler et al. Genome Biology 2014, 15:R35 Page 13 of 19
http://genomebiology.com/2014/15/2/R35

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

RRBS

B
ay

M
et

h

low

high

142278

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

RRBS

B
ay

M
et

h

low

high

191749

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

RRBS

B
ay

M
et

h

low

high

75000

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

a) HUES6 b) HUES8

c) Colon normal d) Colon tumor

RRBS

B
ay

M
et

h

low

high

90490

Figure 9 Regional methylation estimates for samples of Bock data. Smoothed color density representation of regional DNAme estimates of
BayMeth, plotted against RRBS methylation levels, where the estimated standard deviation of BayMeth is smaller than 0.15 for bins with more than
20 reads for RRBS and at least a depth of 10 in the SssI control. (a)-(d) Single samples from the original study. The number of bins for each sample is
shown at the bottom center of the panels. RRBS, reduced representation bisulfite sequencing.

comprehensibly with high precision (low standard devi-
ation), which may, however, not coincide with the RRBS
estimates. Figure 10 shows regional posterior variances
obtained by BayMeth compared to SssI depth for bins
where the depth in the RRBS was larger than 20. The
posterior variance decreased with increasing SssI depth.
However, the range of posterior variances for low SssI
depth is large. The red boxes contain the bins illustrated in
Figure 9. Of note, comparisons to other methods were not
possible for the Bock data, since we did not have access to
the raw reads.

Discussion
DNAme plays a crucial role in various biological processes
and is known to be aberrant in several human diseases,

such as cancer. There are now a multitude of methyla-
tion profiling platforms, each with inherent advantages
and disadvantages. Bisulfite-based approaches are con-
sidered the gold standard since they allow quantification
at single-base resolution. However, applied genome-wide,
this technique can be inefficient and expensive, in terms
of CpGs covered per read or base sequenced [5,16]. On
the other hand, approaches based on affinity capture, such
as MBD and MeDIP, combined with sequencing seem to
provide a good compromise between cost and coverage,
albeit at lower resolution. Thus, we consider MBD-seq
and its variants to be an attractive alternative and have
developed an efficient data analytic approach to facilitate
their use. In addition, MBD-seq has recently been used
with only hundreds of nanograms of starting DNA, thus
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Figure 10 Regional variance estimates versus SssI control for Bock data. Smoothed color density representation of variance estimates
obtained by BayMeth versus number of reads in the SssI control for a read depth larger than 20 in RRBS. The red boxes contain the bins used in
Figure 9, which have a depth of at least 10 in SssI and a standard deviation smaller than 0.15, i.e. a variance smaller than 0.025. (a)-(d) Single samples
from the original study.

making it applicable to a wider range of studies, such as
clinical samples [44].
The key to our proposed method is the use of methy-

lated DNA captured from a fully methylated SssI con-
trol. To facilitate accurate transformation of read counts
into methylation, we recommend this sample is collected
under the same conditions (e.g. same elution) used for
the samples of interest. In our analyses, we used commer-
cially available SssI-treated DNA [26,37] for the MBD-seq
experiments and used the 450k platform to verify that
the overwhelming majority of CpG sites were indeed
methylated (see Additional file 2: Figure S6). Similarly,
such a sample can be constructed directly and inexpen-
sively [45].
Our proposed method, BayMeth, is a flexible empiri-

cal Bayes approach, which transforms read densities into

regional methylation estimates. Our model is based on a
Poisson distribution and takes advantage of SssI control
data in two ways: (i) we model SssI data jointly with data
from a sample of interest to preserve the linearity of the
methylation estimation and (ii) we explicitly get informa-
tion about the region-specific read density as a function
of CpG density. Our method is similar in principle to
MEDME, which was applied to fully methylated MeDIP
microarray intensities [36]. However, our approach nec-
essarily modifies the assumptions for count data (i.e. read
densities versus probe intensities) and is effectively a
compromise between the global fit that MEDME imple-
ments and a region-specific correction. We showed that
BayMeth performed better than state-of-the-art tech-
niques for MBD-seq data, using multiple datasets where
independent true methylation levels were available from
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WGBS or bisulfite-based methylation arrays. In general,
MEDIPS and BALM underestimate the methylation levels
and do not offer variability estimates. Batman performs
reasonably well, but our results suggest that its variability
estimates are generally underestimated and the method is
very computationally demanding. Our model performed
best in point estimation and was the only method to
provide reasonable interval estimates. BayMeth uses ana-
lytic expressions for the posterior marginal distribution
and the posterior mean and variance, avoiding computa-
tionally expensive sampling algorithms. Furthermore, we
can explicitly integrate existing CNV data, which gives
an improvement when applied to cancer datasets. CNV
adjustments may be possible with existing approaches
such as Batman or MEDIPS, based on ad hoc transfor-
mations of the read counts (e.g. see [30]), but are not
included within the model formulation. In contrast, our
model preserves the count nature of the data. To adjust the
modeled mean for effects arising due to library composi-
tion or CNV, we introduced a normalization offset. This
strategy is quite general and could be extended beyond
composition and CNV (e.g. see [33,46]).
A conceptually similar Bayesian hierarchical model,

which uses MCMC sampling, has been proposed for
methyl-seq experiments where methylation levels are
derived based on enzymatic digestion using two enzymes
[47]. A separate Poisson model is assumed for the tag
counts of each enzyme. The models are linked through a
shared parameter. One Poisson model contains a methy-
lation level parameter μ, assumed to be uniformly dis-
tributed a priori. Our model may find application in
this domain. In the applications presented here, a uni-
form prior distribution for the methylation level was
observed to perform best when taking SssI information
into account, while a mixed prior of a point mass at
zero and at one, combined with a beta distribution, per-
formed best when ignoring SssI information. The ana-
lytical expressions for the mean, variance and posterior
marginal distribution are also available when using a mix-
ture of beta distributions (see Materials and methods).
Therefore, context-specific information, such as CpG den-
sity or the position relative to transcriptional features,
could be incorporated into the prior distribution for the
methylation level. We have tried various weighted mix-
tures of two or three beta distributions that build in
contextual information; however, these did not outper-
form the uniform prior when borrowing strength from
the SssI sample. The reason probably lies in the fact that
there is only one data point for each methylation param-
eter. Hence, when using an informative prior distribution
for the methylation level, it is very difficult for the data to
overcome this prior guess.
It is well known that methylation levels are depen-

dent within neighboring regions. Thus, a potential

improvement may involve modeling correlation between
neighboring genomic bins. One approach might be
Gaussian Markov random fields [48]; however, the ana-
lytical summaries are lost, so the gain in performance
may not justify the more complex model and associated
computational cost.
BayMeth may also be regarded as a preprocessing step

in differential methylation analysis. The uncertainty in
methylation estimates obtained by BayMeth could be
propagated to a downstream analysis, which may lead to
improved inferences on differential methylation.

Conclusions
BayMeth is an empirical Bayes approach that uses a
fully methylated (SssI treated) control sample to trans-
form observed read counts into regional methylation
levels. BayMeth can be applied to methylated DNA affin-
ity enrichment assays (e.g MBD-seq, MeDIP-seq) and
improves on existing methods. Inefficient capture can
readily be distinguished from low methylation levels by
means of larger posterior variances. Furthermore, copy
number variation data can be explicitly integrated, which
offers improvement when applied to cancer datasets.
Notably, BayMeth offers computationally-efficient ana-
lytic expressions for the mean and variance of the methy-
lation level. A software implementation is freely available
in the Bioconductor Repitools package.

Materials andmethods
Methyl binding domain sequencing data for IMR-90,
LNCaP and SssI DNA
We used LNCaP and SssI MBD-seq data and Affymetrix
genotyping array data (LNCaP only) from Robinson et
al. [37]. The data can be found at [49] under accession
number [GEO:GSE24546]. Similarly, IMR-90 MBD-seq
data are available from [GEO:GSE38679]. Details of DNA
capture, preparation and sequencing can be found in
Robinson et al. [26,37].

Illumina HumanMethylation450 data for IMR-90, LNCaP
and SssI DNA
IMR-90 and SssI DNA was processed by the Illumina
HumanMethylation450 platform using the standard
Illumina protocol. The raw (IDAT) and processed
files are available at [49] under accession number
[GEO:GSE54375]. The 450k array data for LNCaP cells
originated from Robinson et al. [37] and can be found at
[49] under accession number [GEO:GSE34340].

Methyl binding domain sequencing andmethylated DNA
immunoprecipitation sequencing for comparing data from
different methylation kits
For comparing data obtained by differentmethylation kits,
we capturedmethylated DNA from IMR-90 and SssI DNA
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as follows. Genomic DNA was sheared to 150 to 200
bp using the Covaris S220 sonicator. MBDs were cap-
tured using the MethylMiner Methylated DNA Enrich-
ment Kit (Invitrogen, Carlsbad, USA) and the MethylCap
Kit (Diagenode, Liege, Belgium) following the manu-
facturers’ recommended protocols. The bound fractions
were eluted at 500 mM and 1 M NaCl for MethylMiner
and with buffers at different salt concentrations (low,
medium, high) for MethylCap. Sequencing libraries were
prepared with the SOLiD Fragment Library Construc-
tion Kit (Applied Biosystems, Foster City, USA). MeDIP-
seq methylation immunocapture and library preparation
were performed using the MeDIP Kit (Active Motif,
Carlsbad, USA) following the manufacturer’s recom-
mended protocol.

Calculation of CpG density
CpG density is defined to be a weighted count of
CpG sites in a predefined region. We used the func-
tion cpgDensityCalc provided by the R-package
Repitools [50] to get bin-specific CpG density esti-
mates using a linear weighting function and a win-
dow size of 700 bp (since we expect fragments around
300 bp).

Calculation of mappability
Using Bowtie, all possible 36-bp reads of the genome were
mapped back against the hg18 reference, with no mis-
matches. At each base, a read can either unambiguously
map or not. A mappability estimate gives the propor-
tion of reads that can be mapped to a specific regions.
To get bin-specific mappability estimates, we used the
function mappabilityCalc in the Repitools pack-
age [50]. In our analysis, a window of 500 bp was used
(250 bp upstream and downstream from the center from
each 100-bp bin) and the percentage of mappable bases
was computed. For the methylation kits analysis we used
mappability estimates for hg19 provided by ENCODE on
[51], from which we derived a weighted mean based on
the window size. Analogously, we used [52] for the Bock
data analysis.

Derivation of region-specific methylation estimates from
whole genome bisulfite sequencing
In the Lister et al. IMR-90 WGBS data [40], the num-
ber of reads r+j and r−j overlaying a cytosine j in the
positive (+) and negative strand (−), respectively, is
available. Furthermore, the number of these reads, m+

j
and m−

j , that contain a methylated cytosine, is known.
A single-base methylation estimate can be obtained as(
m+

j + m−
j

)
/
(
r+j + r−j

)
. To get a bin-specific methyla-

tion estimate, all cytosines lying within a bin of interest B
are taken into account:

μB =
∑

j∈B
(
m+

j + m−
j

)
∑

j∈B
(
r+j + r−j

)

Here,
∑

j∈B
(
r+j + r−j

)
is termed the depth.

Derivation of region-specific methylation estimates from
450K arrays
First, the Illumina HumanMethylation450 methylation
array was preprocessed using the default parameters of
the minfi package [53], version 1.3.3. For each sample, a
vector of beta values, one for each targeted CpG site rep-
resenting methylation estimates, is produced. To obtain
(100 bp) bin-specific methylation profiles, we average beta
values from all CpG sites within 100 bp (upstream and
downstream; total window of 200 bp) from the center of
our 100-bp bins.

Derivation of region-specific methylation estimates from
reduced representation bisulfite sequencing data
For the Bock data analysis, RRBS data were available from
[43], which we consider to be the gold standard. Both
the number of reads that overlay a cytosine (T) and the
number of cytosines that stay a cytosine (M), i.e. are
methylated, are given. Note that for one CpG site only
information from one strand is available. To get smooth
methylation estimates, we used 150-bp bins (overlapping
by 100 bp). The methylation level for one 150-bp bin i was
derived as:

mi =
∑

M∈i∑
T∈i

That means using information for all CpG sites that fall
into bin i.

Determining the normalizing offset
The composition of a library influences the resulting read
densities [54]. For example, the SssI control is a more
diverse set of DNA fragments since it captures the vast
majority of CpG-rich regions in the genome. Therefore,
if the total sequencing depth were to be fixed, one would
expect a relative undersampling of regions in SssI, com-
pared to a sample of interest that is presumably largely
unmethylated. To adjust the modeled mean (in the Pois-
son model) for these composition effects, we estimate
a normalizing factor f that accounts simultaneously for
overall sequencing depth and composition. Additional
file 2: Figure S2 shows anM (log-ratio) versus A (average-
log-count) plot for 50,000 randomly chosen (100 bp) bins
for IMR-90 compared to the fully methylated control. A
clear offset from zero is visible, since the distribution of
M values is skewed in the negative direction. The normal-
ization offset is estimated as f = 2median(MA>q), with q
corresponding to a high quantile of A (here, 0.998; more
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than 35,000 points). In cancer samples where CNV is
common, the normalization factor f is calculated from
bins that originate from the most prominent copy number
state (e.g., ccn = 4 in LNCaP cells).

Estimation of copy number
Copy numbers were estimated from Affymetrix SNP6.0
genotyping array data by PICNIC [55], using default
parameters. PICNIC is an algorithm based on a hidden
Markov model to produce absolute allelic copy number
segmentation.

BayMeth methodology
BayMeth’s processing can roughly be divided into two
steps:

1. An empirical Bayes procedure to derive sensible
prior parameters for all parameters in the model.

2. The analytical derivation of the posterior marginal
distribution, posterior expectation and variance for
the methylation levels. Credible intervals are derived
numerically from the posterior marginal distribution.

The details for both steps are provided in Additional file 1.
In practice BayMeth can be used almost as a black box
within the Bioconductor package Repitools [50].

Batman specification
Batman is an algorithm implemented in Java and run
from the command prompt. The original Batman can be
downloaded from [56]. We used an unreleased version,
20090617, received directly from Thomas Down, which
had MeDIP-seq-specific enhancements. The commands
used to run Batman are given on the supplementary web-
site [57].

MEDIPS specification
We used R-Bioconductor MEDIPS version 1.4.0. The
detailed command sequence is given on the supplemen-
tary website [57]. MEDIPS returns methylation estimates
in the range from zero to 1,000, which we rescaled to the
interval [0, 1]. In our comparison, we used the absolute
methylation score provided by MEDIPS.

BALM specification
BALM is an algorithm implemented in C and C++ and run
from the command prompt. The original BALM can be
downloaded from [58].We used version 1.01. The detailed
command sequence is given on the supplementary web-
site [57]. BALM returns a vector of methylation estimates,
one for each targeted CpG site. To obtain (100 bp) bin-
specific methylation profiles, we averaged the methylation
estimates from all CpG sites within 100 bp (upstream and
downstream; total window of 200 bp) from the center of

our 100-bp bins. For the IMR-90 dataset, BALM was run
without an input control. To assess the effect of the miss-
ing input control, we ran BALM using a sample from a
normal human prostate epithelial cell line (PrEC) as input
control, which gave almost identical performance results.

Software
BayMeth is fully integrated into the R package
Repitools and available from the Bioconductor
project. Data (semi-processed), R code for all figures and
analyses are provided on [57].

Additional files

Additional file 1: Statistical details of BayMeth. This document
describes the BayMeth methodology. Two different prior distributions for
the methylation level are presented, namely, a mixture of beta
distributions, and a mixture of a point mass at zero, a beta distribution and
a point mass at one (Dirac-beta-Dirac prior). An empirical Bayes procedure
is used to derive prior parameters. The analytical derivation of the posterior
marginal distribution and parameter estimation is described for both
priors. We outline the derivations for the standard BayMeth version,
i.e. taking advantage of SssI information, and for the SssI-free version.

Additional file 2: Supplementary figures and tables. This document
contains six supplementary figures and one supplementary table. Detailed
descriptions are provided within the file.

Additional file 3: BayMeth analysis of Bock data. This document
outlines all data preparation steps performed and presents detailed R code
for the BayMeth analysis conducted using the Bioconductor package
Repitools.
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