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Abstract

We have developed a novel machine-learning approach, MutPred Splice, for the identification of coding region
substitutions that disrupt pre-mRNA splicing. Applying MutPred Splice to human disease-causing exonic mutations
suggests that 16% of mutations causing inherited disease and 10 to 14% of somatic mutations in cancer may
disrupt pre-mRNA splicing. For inherited disease, the main mechanism responsible for the splicing defect is splice
site loss, whereas for cancer the predominant mechanism of splicing disruption is predicted to be exon skipping
via loss of exonic splicing enhancers or gain of exonic splicing silencer elements. MutPred Splice is available at
http://mutdb.org/mutpredsplice.
Introduction
In case-control studies, the search for disease-causing
variants is typically focused on those single base substi-
tutions that bring about a direct change in the primary
sequence of a protein (that is, missense variants), the
consequence of which may be structural or functional
changes to the protein product. Indeed, missense muta-
tions are currently the most frequently encountered type
of human gene mutation causing genetic disease [1].
The underlying assumption has generally been that it is
the nonsynonymous changes in the genetic code that are
likely to represent the cause of pathogenicity in most
cases. However, there is an increasing awareness of the
role of aberrant posttranscriptional gene regulation in
the etiology of inherited disease.
With the widespread adoption of next generation se-

quencing (NGS), resulting in a veritable avalanche of
DNA sequence data, it is increasingly important to be
able to prioritize those variants with a potential func-
tional effect. In order to identify deleterious or disease-
causing missense variants, numerous bioinformatic tools
have been developed, including SIFT [2], PolyPhen2 [3],
PMUT [4], LS-SNP [5], SNAP [6], SNPs3D [7], MutPred
[8] and Condel [9] among others. However, the majority
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of these methods only consider the direct impact of the
missense variant at the protein level and automatically
disregard same-sense variants as being ‘neutral’ with re-
spect to functional significance. Although this may well
be the case in many instances, same-sense mutations
can still alter the landscape of cis-acting elements in-
volved in posttranscriptional gene regulation, such as
those involved in pre-mRNA splicing [10-12]. It is clear
from the global degeneracy of the 5′ and 3′ splice site
consensus motifs that auxiliary cis-acting elements must
play a crucial role in exon recognition [13]. To date, a
considerable number of exonic splicing regulatory (ESR)
and intronic splicing regulatory (ISR) elements have
been identified [14-19]. Generally these are classified as
either enhancers (exonic splicing enhancers (ESEs)/in-
tronic splicing enhancers (ISEs)) or silencers (exonic spli-
cing silencers (ESSs)/intronic splicing silencers (ISS)),
which strengthen and repress, respectively, recognition of
adjacent splice sites by the splicing machinery. This dis-
tinction may be to some extent artificial in so far as an
ESE can act as an ESS and vice versa depending upon the
sequence context and the trans-acting factor bound to
it [16,20]. These trans-acting factors include members
of the serine/arginine-rich family of proteins (SR pro-
teins) typically known to bind to splicing enhancers and
the heterogeneous nuclear ribonucleoprotein family of
complexes (hnRNPs), which are thought to bind splicing
silencers. However, it is clear that our knowledge of the
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cooperative and antagonistic elements that regulate pre-
mRNA splicing in a context-dependent manner is still
very limited [21].
The functional consequences of a splice-altering variant

(SAV) may also vary quite dramatically; thus, splicing
events that alter the reading frame can introduce prema-
ture termination codons that may then trigger transcript
degradation through nonsense-mediated decay. Alterna-
tively, an aberrant splicing event may maintain the open
reading frame but lead instead to a dysfunctional protein
lacking an important functional domain. Even a splice-
altering variant that produces only a small proportion of
aberrant transcripts could still serve to alter the gene ex-
pression level [21].
Up to approximately 14% of all reported disease-causing

nucleotide substitutions (coding and non-coding) listed
in the Human Gene Mutation Database [1] (11,953 mu-
tations; HGMD Pro 2013.4) are thought to disrupt pre-
mRNA splicing whereas 1 to 2% of missense mutations
have been reported to disrupt pre-mRNA splicing
(HGMD Pro 2013.4). Previous studies have, however,
found that the actual proportion of disease-causing
missense mutations that disrupt pre-mRNA splicing
could be rather higher [22-25]. The difference between
the observed and predicted frequencies of disease-
causing splicing mutations may be due in part to the
frequent failure to perform routine in vitro analysis (for
example, a hybrid minigene splicing assay [26]), so the
impact of a given missense mutation on the splicing
phenotype is generally unknown. The likely high fre-
quency of exonic variants that disrupt pre-mRNA spli-
cing implies that the potential impact upon splicing
should not be neglected when assessing the functional
significance of newly detected coding sequence vari-
ants. Coding sequence variants that disrupt splicing
may not only cause disease [22] but may in some cases
also modulate disease severity [27,28] or play a role in
complex disease [29]. The identification of disease-
causing mutations that disrupt pre-mRNA splicing will
also become increasingly important as new therapeutic
treatment options become available that have the po-
tential to rectify the underlying splicing defect [30,31].
Current bioinformatic tools designed to assess the

impact of genetic variation on splicing employ different
approaches but typically focus on specific aspects of spli-
cing regulation (for example, the sequence-based predic-
tion of splice sites as employed by NNSplice [32] and
MaxEntScan [33]) or the sequence-based identification
of splicing regulatory elements as exemplified by ESE-
Finder [14], RESCUE-ESE [15], Spliceman [34] and
PESX [19]. Other tools have employed a combination of
a sequence-based approach coupled with various gen-
omic attributes - for example, Skippy [35] and Human
Splice Finder [36]. In general, however, most tools have
not been optimized to deal with single base substitu-
tions, and require the wild-type and mutant sequences
to be analyzed separately with the user having to com-
pute any difference in predicted splicing regulatory ele-
ments. Tools that are designed specifically to handle
single base substitutions include Spliceman, Skippy and
Human Splice Finder (HSF). In most cases, as each tool
focuses on specific aspects of the splicing code, there is
often a need to recruit multiple programs [37] before
any general conclusions can be drawn.
An exome screen will typically identify >20,000 exonic

variants [38]. This volume of data ensures that high-
throughput in silico methods are an essential part of the
toolset required to prioritize candidate functional vari-
ants from the growing avalanche of sequencing data
now being generated by NGS. NGS data analysis nor-
mally involves applying multiple filters to the data in
order to prioritize candidate functional variants. When
applying NGS filters, it is important to remember that
same-sense variants may alter pre-mRNA splicing via a
number of different mechanisms. Hence, a naïve NGS
filter that only considers variants within the splice site
consensus as candidate splicing-sensitive variants would
not identify same-sense variants that caused exon skip-
ping via a change in ESR elements.
Currently, several general areas need to be improved

in relation to the identification of genetic variation re-
sponsible for aberrant pre-mRNA splicing. Firstly, al-
though the consensus splice site sequences are well
defined, the auxiliary splicing elements and their interac-
tions with splice sites are not well understood. Secondly,
there is an urgent need for larger unbiased datasets of
experimentally characterized variants that alter splicing
and have been quantitatively assessed with respect to the
mRNA splicing phenotype. This would provide better
training data for new models and provide new datasets to
benchmark the performance of different tools (both new
and existing). Thirdly, there is an urgent need for new bio-
informatic tools suitable for use in a high-throughput
NGS setting. These tools promise to be invaluable for the
comprehensive evaluation of the impact of a given variant
on mRNA processing (that is, not just in terms of splice
site disruption). It would also be beneficial if the specific
consequences for the splicing phenotype (that is, multiple
exon skipping, cryptic splice site utilization, and so on)
could be accurately predicted so as to reduce our reliance
upon expensive and time-consuming in vitro analysis.
Finally, these high-throughput in silico tools should be de-
signed in such a way as to be able to handle different types
of genetic variation (that is, coding, non-coding, single
base substitutions, microdeletions, microinsertions, and so
on) and allow assessment of the combined impact of mul-
tiple sequence changes in cis (for example, two substitu-
tions within the same exon).
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Materials and methods
Data sets
For the positive data set (disease-causing splice altering
variants (DM-SAVs); Table 1) employed in this study, we
identified 1,189 exonic disease-causing/disease-associ-
ated mutations from the HGMD (August 2012) [1,39]
that were reported (either in the original or a subsequent
report) to disrupt pre-mRNA splicing according to the
HGMD (Table S1 in Additional file 1).
The first negative set of splice neutral variants (SNVs)

comprised 7,729 human inherited disease-causing mis-
sense mutations from HGMD, not reported to disrupt
exon splicing (August 2012) [1,39] and restricted so as
to only include mutations from the same set of 453
genes from which the positive set of DM-SAVs were de-
rived. This negative set is referred to as disease-causing
splice neutral variants (DM-SNVs; Table 1). It should be
noted that whilst the majority of disease-causing mis-
sense mutations in this set of DM-SNVs are likely to
exert a pathogenic effect via direct disruption to protein
structure/function, it would be reasonable to suppose
that approximately 25% may disrupt or modulate spli-
cing [23-25].
The second negative set of SNVs comprised 7,339 high

frequency exonic SNPs (SNP-SNVs; Table 1), which were
compiled from 1000 Genomes Project data [38]. In the
SNP-SNV set, only SNPs found with ≥30% minor allele
frequency (MAF) in at least one HapMap population
from the 1000 Genomes Project data were included.
Owing to their high MAF, it is considered unlikely that
the majority of these common polymorphisms would
have a significant effect on the pre-mRNA splicing
phenotype (that is, they may be regarded as being puta-
tively neutral with respect to splicing).

Training sets
Using the three data sets described above (DM-SAVs,
DM-SNVs and SNP-SNVs; Table 1), four different sets of
training data were then compiled (Table 2). For the first
three training sets, the DM-SAVs constituted the positive
set; therefore, the four training sets differed in terms of
Table 1 Summary of original data sets used in this study

Data set name Type Descr

Disease-causing splice altering
variants (DM-SAVs)

Splice altering variants (SAVs) Inherit
that d

Disease-causing splice neutral
variants (DM-SNVs)

Splice neutral variants (SNVs) Inherit
report
set of
expec
appro

Polymorphic splice neutral
variants (SNP-SNVs)

Splice neutral variants (SNVs) Putativ
(minor
Genom
to hav
the choice of negative set of SNVs. For the first training
set (Table 2; disease negative set), the negative set com-
prised 7,729 DM-SNVs. The second training set (Table 2;
SNP negative set) used a negative set of 7,339 SNP-
SNVs whilst the third training set employed a mixed
negative set containing all 7,729 DM-SNVs and all 7,339
SNP-SNVs. Finally, as a control training set (Table 2;
Random SNP set), we randomly relabeled 50% of the
negative SNP-SNVs as positive examples, generating a
training set comprising positive and negative examples
exclusively derived from the SNP-SNV data set.
For the purposes of evaluating a semi-supervised

learning approach, three different iterations (Iter. 1, Iter.
2 and Iter. 3) of the original training data were con-
structed. In the first iteration (Iter. 1), the Random For-
est (RF) classification model (see Classification method
section for more details) was built using the original four
training sets outlined above. Performance was then eval-
uated with an unseen test set (see Performance evalu-
ation section for more details); the respective model for
each training set was then used to build the next iter-
ation (Iter. 2) of the training sets. As the DM-SNV set
may contain approximately 25% SAVs, the DM-SNV
model built previously in Iter. 1 was then used to iden-
tify SAVs in the Disease negative set and SAVs in the
SNP negative set identified using the SNP-SNV Iter. 1
model. SAVs predicted with high confidence in both
negative sets (DM-SNVs and SNP-SNVs) were then re-
moved and the model retrained to yield Iter. 2. A
method for semi-supervised classification termed self-
training [40] was then employed to build the next iteration
(Iter. 3). Semi-supervised learning typically involves using
a small amount of labeled data (for example, DM-SAV)
and a large amount of unlabeled data. So, in this instance,
the labeling is with respect to impact on splicing (rather
than a disease-causing label). The unlabeled data sets
comprised the entire HGMD inherited disease data set of
47,228 missense mutations plus the combined data set of
missense and same-sense variants identified in the 1000
Genomes Project with no MAF filter applied, that is, in-
cludes common and rare variants (192,841 variants). To
iption Variants Genes

ed disease-causing coding region mutations
isrupt pre-mRNA splicing, derived from HGMD

1,189 453

ed disease-causing missense mutations not
ed to disrupt splicing derived from the same
genes as the DM-SAVs. The majority are not
ted to have any effect on exon splicing but
ximately 25% may nevertheless disrupt splicing

7,729 364

ely ‘neutral’ common coding region SNPs
allele frequency >0.3) from the 1000
es Project. The majority are not expected
e any effect on pre-mRNA splicing

7,339 3,773



Table 2 Summary of training set sizes derived from the data sets outlined in Table 1

Training set name Positive set (Iter. 1, Iter. 2, Iter. 3) Negative set (Iter. 1, Iter. 2, Iter 3.)

Disease negative set DM-SAVs (1,189, 1,189, 2,601) DM-SNVs (7,729, 7,363, 31,967)

SNP negative set DM-SAVs (1,189, 1,189, 2,090) SNP-SNVs (7,339, 7,253, 70,847)

Mixed negative set (disease and SNP) DM-SAVs (1,189, 1,189, 6,335) DM-SNVs and SNP-SNVs (15,068, 14,616, 111,630)

Random SNP set (control) SNP-SNVs (50%) (3,669, 3,669, 9,901) SNP-SNVs (50%) (3,670, 3,613, 7,349)

Number of training examples for each different iteration (iter. 1, iter. 2 and iter. 3.) are shown in parentheses.
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build the third iteration (Iter. 3), the semi-supervised
labeling of variants was based on the second iteration
(Iter. 2) model of the respective training sets; this clas-
sifier was then applied to the unlabeled data (47,228
disease-causing missense mutations and 192,841 mis-
sense and same-sense variants from the 1000 Genomes
Project) from which confidently labeled examples were
used to supplement the existing training sets used in
Iter. 2. A RF classifier was then built with the expanded
training sets to complete the third iteration (Iter. 3). It
should be noted that the data sets employed here for
both training and subsequent analysis only include vari-
ants for which all splicing-relevant features could be
derived; therefore, variants with missing values were ex-
cluded from the data set.
To summarize: iteration 1 (Iter. 1), model built using

original training data; iteration 2 (Iter. 2), negative sets
(DM-SNVs and SNP-SNVs) had predicted SAVs re-
moved; iteration 3 (Iter. 3), positive and negative sets
were supplemented with data labeled from the respective
model produced in iteration 2 (Iter. 2).

Discriminative features investigated in this study
In order to evaluate discriminative features or attributes
useful in the identification of exonic single base substitu-
tions that modulate splicing, an array of features were
derived based upon the genomic coordinate of the sub-
stitution in the human reference assembly (GRCh37/
hg19). The majority of existing features employed here
were chosen because of prior evidence identifying them
as useful in a splicing context [35,41].
Features investigated in this study can be broadly split

into three classes: (1) features directly pertaining to the
variant under consideration (SNP-based); (2) features as-
sociated with the exon (and flanking intron) in which
the variant is located (exon-based); (3) features pertain-
ing to the gene in which the variant occurs (gene-based).

SNP-based features
Ten different types of SNP-based features were selected
(see Table 3 for a summary of SNP-based features and
how they were constructed). SNP-based features included
the distance of the substitution from the nearest splice site
(5′ or 3′). To assess the loss and/or gain of ESR elements
(ESR change) consequent to a substitution, we employed a
previously described method [35] that models the effect of
a nucleotide substitution on both the number of ESE and
ESS sites created (gained) or abolished (lost) as a conse-
quence of the substitution. Since a number of experimen-
tally or computationally derived sets of ESR (ESE and
ESS) motifs have been previously identified, including
RESCUE-ESE [15], PESE and PESS [19], Fas-ESS [18], we
selected the NI-ESR hexamers [17], comprising 979 ESE
motifs and 496 ESS motifs, for use in this analysis. This
was because this set had previously been found to provide
the strongest signal for identifying exon-skipping variants
[35]. The NI-ESR set uses the neighborhood inference
(NI) algorithm to identify new ESR motifs based upon
previously identified sets of ESR elements (RESCUE-ESE,
PESE, PESS and FAS-ESS). A subset of the newly identi-
fied ESR motifs predicted by the NI algorithm was then
validated using an in vivo splicing reporter assay. The ESR
change feature was then calculated using a sliding window
that covered all hexamers surrounding the variant. Hexam-
ers not present in the NI-ESR set were considered to be
neutral. The ESR change comprises nine features derived
from the frequency of ESR changes resulting from the sub-
stitution: ESE to neutral (ESE loss), ESE to ESE, neutral to
ESE (ESE gain), ESE to ESS (ESE loss and ESS gain), neu-
tral to neutral, ESS to ESS, neutral to ESS (ESS gain), ESS
to neutral (ESS loss), ESS to ESE (ESS loss and ESE gain).
To express the relationship between disease and neutral

variants and their differential distributions with respect to
loss or gain of an ESE or ESS, we constructed a novel ESR
hexamer score (ESR-HS) function. This scoring function
is outlined in Figure S2 in Additional file 2. To calculate
this score, let t ∈ {ESEloss, ESEgain, ESSloss, ESSgain}, and
let St,0,hgmd … St,n,hgmd and St,0,snp … St,n,snp be normalized
counts plus a pseudocount for each hexamer in set t
where n is the number of hexamers such that:

X
i
St;i;hgmd
� � ¼ 1 and

X
i
St;i;snp
� � ¼ 1

For some hexamer k in set t, let Ht,k,0,hgmd … Ht,k,5,hgmd

and Ht,k,0,snp … Ht,k,5,snp be normalized counts plus a
pseudocount for position 0 through 5 such that:

X
i
Ht;k;i;hgmd
� � ¼ 1 and

X
i
Ht;k;i;snp
� � ¼ 1



Table 3 Summary of features investigated in this study

Feature Type Description

Distance to nearest splice site SNP-based Distance between a given variant and the nearest 5′ or
3′ splice site in the target exon.

ESR change SNP-based Change in the frequency of ESR elements subsequent
to a single base substitution. This includes:

ESE to neutral (ESE loss)

ESE to ESE (no change)

Neutral to ESE (ESE gain)

ESE to ESS (ESE loss and ESS gain)

Neutral to neutral (no change)

ESS to ESS

Neutral to ESS (ESS gain)

ESS to neutral (ESS loss)

ESS to ESE (ESS loss and ESE gain)

In ESE SNP-based Frequency of ESE binding sites (in the wild-type) that
overlap with the location of the variant

In ESS SNP-based Frequency of ESS binding sites (in the wild-type) that
overlap with the variant

ESR hexamer score (ESR-HS) SNP-based Hexamer scoring function to express the relationship
between disease and neutral variants and their differential
distributions with respect to loss or gain of an ESE or ESS

Spectrum kernel SNP-based Frequency of 3-mers and 4-mers over an 11 bp window
(wild type and mutant)

Change in natural splice site strength SNP-based MaxEnt splice site score of natural splice site in mutant allele
minus MaxEnt splice site score of wild-type allele

Maximum cryptic splice site SNP-based Maximum cryptic splice site (5′ and 3′) score (outside of the
natural splice site) found overlapping the variant on the mutant allele

Evolutionarily conserved element SNP-based PhastCons conserved element probability for substitution site,
based on multiple alignments of 46 placental mammals

Base-wise evolutionary conservation SNP-based PhyloP base-wise sequence conservation score at site of
single base substitution based on multiple sequence alignment
of 46 placental mammals

Natural wild-type splice site strength Exon-based MaxEntScan score of the natural 5′ and 3′ splice site of the
wild-type target exon

Flanking intron size Exon-based Length in base-pairs of the upstream and downstream introns
flanking the target exon

Intronic ESS density Exon-based Intronic ESS density was calculated for 100 bp upstream and
100 bp downstream of the target exon

Exonic ESS density Exon-based ESS density was calculated across the first 50 bp and the last
50 bp of the target exon. If the length of the exon was
less than 100 bp, then the full length of the exon was used to
calculate the ESS density

Exonic ESE density Exon-based Same as above but for ESEs

Internal coding exon Exon-based {true, false}, Is the target exon an internal coding exon
(that is, the target exon is not the first or last coding exon)

Exonic GC content Exon-based Percentage of nucleotides that are either guanine or cytosine
in the target exon

Exon size Exon-based Size of the target exon

Constitutive exon Exon-based Is the target exon constitutively spliced

Exon number Gene-based Number of exons in the transcript

Transcript number Gene-based Number of different reported isoforms that the target gene encodes
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Now we define the combined ESR-HS for a specific
substitution affecting position j of hexamer k in set t,
such that:

ESR‐SH ¼ log2 St;k;hgmd=St;k;snp
� �þ log2 Ht;k;hgmd=Ht;k;j;snp

� �

Thus, this ESR-HS is a robust independent combin-
ation of the differential strength of the hexamer plus the
differential strength of the mutated base in the hexamer.
Another SNP-based feature utilized was the change in

natural splice site strength (5′ and 3′) as a consequence
of the substitution, as measured by the MaxEntScan al-
gorithm [33]. To model cryptic splice site activation, the
maximum splice site score overlapping the variant (not
including the natural splice site) found in the mutant
RNA sequence was also measured. As it is unlikely that
all types of ESR (or other splicing element) have been
fully characterized to date, we attempted to overcome
this by applying a string-based sequence similarity kernel
(the ‘spectrum kernel’), first proposed for classifying pro-
tein sequences [42]. By applying the spectrum kernel to
both wild-type and mutant sequences, we could identify
splicing sequence motifs and measure any changes (loss
or gain) consequent to a single base substitution. The
spectrum kernel was then applied over an 11 bp window
(that is, 5 bp upstream and 5 bp downstream of the vari-
ant) using the wild-type genomic RNA sequence to
count the frequencies of all k-mers of length = 4 (for ex-
ample, AGAG, and so on) and length = 3 (for example,
GAA); this process was then repeated for the mutant al-
lele. Finally, for SNP-based features, evolutionary conser-
vation based on PhyloP at the position of the substitution
[43] and PhastCons [44] was computed, based on the
multiple DNA sequence alignments of 46 placental
mammal species. The PhyloP score represents a base-
by-base (ignores neighboring bases) conservation score
for each base of the reference genome. Therefore, Phy-
loP measures both conservation (slower than expected
evolutionary change) and accelerated evolution (faster
than would be expected under neutral drift). The Phast-
Cons score represents the probability of the mutated
base being located within an evolutionarily conserved
element and therefore considers the conservation of
the neighboring bases. PhastCons has been used to
identify candidate functional elements (for example,
splicing factors) in genomic sequences [43]. Both the
PhyloP and PhastCons scores were downloaded from
the UCSC Genome Browser [45].

Exon-based features
With respect to the ‘target’ exon within which a given
substitution occurred, nine exon-based features were
computed. These features included natural wild-type
splice site strength (5′ and 3′) using the MaxEntScan
algorithm [33], flanking intron size, exon size, exonic
GC content, exonic ESE density, exonic ESS density and
intronic ESS density. ESE and ESS densities were calcu-
lated using a sliding window across the first 50 bp and
the last 50 bp of each target exon. Where the length of
the exon was <100 bp, then the full length of the exon
was used to calculate the ESE and ESS density. Intronic
ESS density values between 100 bp upstream and down-
stream of the relevant exon were calculated in the same
manner as the exonic ESE and ESS density. Finally, for
the exon-based features, two Boolean features were
computed; internal coding exon (the target exon is nei-
ther the first nor the last coding exon) and constitutive
exon (exon is present in every transcript).

Gene-based features
Two gene-based features were calculated, the first being
the number of exons in the target isoform and the sec-
ond being the transcript number, which records the
number of known protein isoforms that the target gene
encodes.

Feature ranking
The performance of each feature (or feature subsets)
under investigation (Table 3) was evaluated to assess
how informative specific features were in discriminating
between the DM-SAVs (positive class) and the SNVs
(negative class). Feature ranking was then performed on
two different sets of training data (Table 2; Disease nega-
tive set and SNP negative set; Iter. 1). We evaluated the
performance (10-fold cross-validation; linear support
vector machine (SVM)) of each individual feature or fea-
ture subset by training the ensemble of classification
models with only the specific feature being tested. Re-
ceiver operating characteristic (ROC) curves and the
area under the ROC curve (AUC) were then calculated
for each individual feature. A random feature was com-
puted for each training example (numeric value between
0 and 1) and the AUC generated using the random fea-
ture alone was used as a control. The AUC from each
feature was then compared to the random feature by
means of a t-test with Bonferroni correction (signifi-
cance level P < 0.05). Features that were significantly dif-
ferent from random in the Disease negative set or SNP
negative set are shown in Figure 1.

Classification method
The supervised classification method employed by Mut-
Pred Splice was RF [46], an ensemble method using
hundreds of decision trees to perform classification. RF
has been extensively used in bioinformatics applications,
including the prediction of disease-causing mutations
[8,47-49]. The popularity of RF is due in part to its sim-
plicity with no fine-tuning of parameters required and in



Figure 1 Feature ranking for Disease negative set versus SNP negative set (Iter. 1), shown by means of the average AUC using 10-fold
cross-validation. The linear support vector machine (SVM) classifier was trained with only the specific feature (or feature subset) that was being
tested. As a control, each training example had a randomly generated numerical value computed. AUC values for all features were then compared
with the AUC produced by a classifier trained with only the randomly generated attribute by means of a Bonferroni corrected t-test (P < 0.05).
Significantly different AUC values compared to the random attribute are indicated by asterisks in parentheses for the respective data sets
(significant Disease negative set feature, significant SNP negative set feature). Features are ranked by reference to the Disease negative set.
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part to its speed of classification, which is often faster
than an equivalent SVM model [50]. In this study, as we
are combining multiple classification models and evalu-
ating different training sets, this advantage of RF (limited
tuning required) over SVM (tuning required) was con-
siderable. We did nevertheless evaluate RF versus SVM
and found that classification performance was broadly
similar. SVM is a machine learning model that maxi-
mizes the margin of separation between examples of two
classes projected into high-dimensional space [51,52]. In
this study, we used an SVM with a linear kernel for feature
ranking (Figure 1). For the machine learning algorithm
implementations, we used LIBSVM and R randomForest
package v4.5-36. The Weka toolkit was used for data pre-
processing [53].
Generally, it is preferable to use a balanced training

set (equal number of positive and negative training ex-
amples) to train a supervised classifier, because training
on a highly imbalanced data set can be problematic -
for example, the classifier can tend to classify most ex-
amples as the majority class [54]. In this study, the
number of negative examples (DM-SNVs and SNP-
SNVs) outnumbered the positive examples by a large
margin. To address this inequality and to balance the
training sets, we employed an ensemble of RF classifica-
tion models. This technique was implemented in
MutPred Splice by building (in the case of the first iter-
ation of the Disease negative set, for example) different
balanced training sets, each with the same positive
training set of DM-SAVs, whereas the negative set was
randomly sampled (without replacement) from all avail-
able negative examples (in that training set) until a
balanced set was constructed; this process was then re-
peated for the next model with the remaining negative
DM-SNVs. In MutPred Splice, an RF classifier was then
applied to each of the balanced sets of training data,
with the final predictive probability being an average of
all probability scores produced by each RF classification
model. This final predictive probability of a variant dis-
rupting splicing will henceforth be referred to as the
general score. This ensemble of RFs approach was then
repeated on all four training sets (Table 2).
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Performance evaluation
In order to evaluate the impact of different negative

training sets on classification performance, each version
of MutPred Splice (built using a different negative set
and subsequent iteration; Table 2) was evaluated against
the same independently derived experimentally charac-
terized unseen test set (not present in any training data
or subsequent iterations thereof). This unseen test set
comprised 291 exonic variants (177 positive and 114
negative) experimentally demonstrated to cause either
exon skipping, exon retention or cryptic splice site
activation and previously compiled by others [35,55-59]
and 61 disease-causing exonic splice site (donor -1, ac-
ceptor +1) mutations reported in the literature (derived
from HGMD). The final unseen test set (Table S2 in
Additional file 1) therefore contained 352 variants (238
positive and 114 negative). Using this unseen test set, we
were able to establish whether the MutPred Splice predic-
tions were true positives (TP; that is, predicted to disrupt
splicing and demonstrated to disrupt splicing experimen-
tally), false positives (FP; that is, predicted to disrupt
Figure 2 Model performance evaluation using ROC curves when appl
negative). For each of the four training sets (Table 2), three different RF cla
AUC for each training set and specific iteration are shown in parentheses.
splicing but shown not to disrupt splicing experimentally),
true negatives (TN; that is, predicted not to disrupt spli-
cing and shown not to disrupt splicing experimentally), or
false negatives (FN; that is, predicted not to disrupt
splicing but shown to disrupt splicing experimentally).
This unseen test set approach to validation was favored
over cross-validation, because using an unseen test set
allows for like-with-like comparisons between the dif-
ferent models produced by the different training sets
employed. A MutPred Splice general score probability
threshold of ≥0.60 was employed to indicate a predicted
SAV. This conservative probability threshold was se-
lected so as to minimize the false discovery rate, albeit
at the expense of sensitivity. The performance on this
unseen test set was then assessed by plotting ROC
curves (Figure 2) and calculating the AUC. A ROC
curve displays the true positive rate (or sensitivity) as a
function of the false positive rate. We also employed
standard benchmarking statistics (Table 4) to evaluate
performance such as sensitivity, specificity, accuracy
(average of sensitivity and specificity) and the Matthew’s
ied to the same unseen test of 352 variants (238 positive and 114
ssification models were built (Iter. 1, Iter. 2 and Iter. 3). The percentage



Table 4 Standard performance benchmarks for MutPred Splice based on an unseen test set of 352 variants (238
positive, 114 negative) using the three different iterations (Iter. 1, Iter 2. and Iter. 3) of the four different training sets
identified in this study (Table 2)

Data set False positive rate (%) Sensitivity (%) Specificity (%) Accuracy (%) AUC (%) MCC

Disease negative set Iter. 1 7.0 53.4 93.0 73.2 75.2 0.45

Iter. 2 7.0 52.5 93.0 72.8 75.9 0.44

Iter. 3 4.4 55.0 95.6 75.3 77.1 0.49

SNP negative set Iter. 1 36.8 73.1 63.2 68.1 76.4 0.35

Iter. 2 36.8 72.3 63.2 67.7 76.8 0.34

Iter. 3 34.2 71.0 65.8 68.4 78.3 0.35

Mixed negative set Iter. 1 7.9 56.3 92.1 74.2 78.8 0.46

Iter. 2 7.9 56.7 92.1 74.4 78.6 0.46

Iter. 3 7.0 64.7 93.0 78.8 83.5 0.54

Random SNP set Iter. 1 0.0 1.3 100.0 50.6 50.6 0.06

Iter. 2 0.9 1.7 99.1 50.4 45.2 0.03

Iter. 3 29.8 31.1 70.2 50.6 50.3 0.01

Classification models were built using RF with 1,000 trees. The unseen test set was experimentally characterized with respect to the splicing phenotype.
Performance benchmarks for the final classification model (Mixed negative set; Iter. 3) are highlighted in bold. Performance metrics where appropriate were
calculated using a probability threshold (general score) ≥0.60. The Random SNP set is a control set. MCC, Matthews correlation coefficient.
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correlation coefficient (MCC) [60]. The MCC was
employed since it represents one of the best available mea-
sures of prediction quality. It returns a value between -1
and +1; a coefficient of -1 represents the worst possible
prediction, 0 a random prediction and +1 a perfect
prediction.

Experimental characterization of mRNA phenotype
The impact of the inherited disease-causing mutation
NM_000051.3: ATM c.5932G >T; NP_000042.3: p.E1978X
was assayed in a patient-derived cell line carrying the
E1978X mutation or a control cell line (HEK293). Total
RNA was extracted from cells using Trireagent LS
(Sigma Aldrich, St. Louis, MO USA) and analyzed by
RT-PCR using One-Step RT-PCR mix (Invitrogen,
Carlsbad, CA USA). Amplicons corresponding to the
exon 41 included or skipped product were resolved by
agarose gel electrophoresis and visualized by SYBR
Gold staining (Figure S1 in Additional file 2).

Comparison with existing tools used to identify SAVs
MutPred Splice was designed to identify exonic variants
that disrupt pre-mRNA splicing via multiple mecha-
nisms: for example, splice site disruption, cryptic splice
site activation and exon skipping, and so on. In order to
evaluate the performance of MutPred Splice, we opted
to compare MutPred Splice with ANNOVAR [61], HSF
[36] and Skippy [35]. Although not all the methods eval-
uated here are directly comparable (since they have dif-
ferent applications and limitations), this selection of
tools is nevertheless a fair reflection of the various types
of software currently available to identify exonic SAVs. For
the purposes of this evaluation, we followed, wherever
appropriate and possible, the reported guidelines for per-
formance evaluation of mutation prediction methods [62].
We employed 264 exonic variants (181 positive, 83 nega-
tive) derived from the unseen test where predictions could
be obtained from all the tools evaluated here. For ANNO-
VAR and Skippy, the unseen test set included positive
SAVs that actually lie outside of the scope of the respective
method. Therefore, adjusted performance metrics are also
shown using a subset of the overall test set relevant to the
specific method. For methods that output multiple scores
for a given variant (HSF and Skippy), performance metrics
may differ depending upon both the features and the
thresholds applied. For a detailed description of guide-
lines, applications and performance of the tools evaluated
here, the reader is referred to the relevant website or ori-
ginal reporting publications.

Role of pre-mRNA splicing disruption in inherited disease,
cancer and polymorphism
To assess the proportion of exonic mutations that dis-
rupt splicing in the context of human inherited disease
and cancer, three data sets were compiled (Table 5).
First, 61,305 inherited disease-causing exonic mutations
from HGMD (August 2012) referred to as ‘Inherited
disease’. It should be noted that owing to the inclusion
criteria employed by HGMD, the majority of disease-
causing same-sense mutations reported in HGMD are
putatively splicing-sensitive and so it is expected that a
majority of these inherited disease-causing same-sense
mutations will be also predicted to disrupt pre-mRNA
splicing. Second, 480,730 somatic exonic cancer variants
derived from COSMIC [63,64], referred to as ‘Cancer’. A
subset of these somatic cancer variants will be drivers



Table 5 Predicted proportion of exonic variants that disrupt pre-mRNA splicing in human genetic disease (Inherited
disease, that is, germline; and Cancer, that is, somatic) and also identified in the general population (1000 Genomes
Project participants)

Data set Proportion of SAVs in data set (predicted SAVs/total variants)

Missense Same-sense Nonsense Total

Inherited disease 11.0% (5,193/47,228) 90.3% (468/518) 30.5% (4,130/13,559) 16.0% (9,791/61,305)

Cancer 9.2% (32,056/347,380) 8.6% (9,010/105,094) 32.4% (9,141/28,256) 10.4% (50,207/480,730)

1000 Genomes 6.8% (7,016/103,445) 6.7% (5,968/89,396) 19.5% (273/1,400) 6.8% (13,257/194,241)

The somatic Cancer data set includes driver and passenger mutations recorded in COSMIC [63]. The 1000 Genomes Project data set was derived from the 1000
Genomes Project without any MAF filter having been applied, that is, all rare and common variants were included. The proportion of predicted SAVs for each data
set is shown together with the frequencies of predicted SAVs; the sizes of the data sets are shown in parentheses.

Table 6 Predicted proportion of exonic variants from two
gene subsets (tumor suppressor versus oncogenes) that
disrupt pre-mRNA splicing in human genetic disease
(Inherited disease that is, germline and Cancer that is,
somatic) and also identified in the general population
(1000 Genomes project participants)

Data set Proportion of SAVs in data set
(predicted SAVs/total variants)

Tumor suppressor Oncogenes

Inherited disease 25.3% (1,130/4,463) 10.9% (132/1,207)

Cancer 16.0% (1,612/10,082) 10.9% (525/4,831)

1000 Genomes 7.4% (84/1,133) 8.0% (49/612)

The somatic Cancer data set includes driver and passenger mutations
recorded in COSMIC [63]. The 1000 Genomes Project data set was derived
from the 1000 Genomes Project without any MAF filter having been applied,
that is, all rare and common variants were included. The proportion of
predicted SAVs for each data set is shown, together with the frequencies of
predicted SAVs; the sizes of the data sets are shown in parentheses.
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(directly implicated in oncogenesis), the remainder being
passengers (neutral with respect to cellular prolifera-
tion). A third data set comprised 194,241 exonic vari-
ants, identified by the 1000 Genomes Project [38]
referred to as ‘1000 Genomes’, and was used to compare
and contrast with the disease data sets. Unlike the data
set employed in training (SNP-SNVs), no MAF filter was
applied; therefore, this data set includes both rare and
common variants identified in the 1000 Genomes Project.
These data sets represent variants for which all required
features could be computed; variants with missing values
were excluded from the analysis. The MutPred Splice
model, built using the Mixed negative set (Iter. 3), was
then applied to all three data sets.

Predicting the splicing mechanism disrupted by a SAV
The prediction of the underlying splicing mechanism dis-
rupted by a SAV (for example, cryptic splice site activa-
tion) is based on a previously described method [8], which
compares the relevant splicing property with that of the
respective distribution of scores obtained from pre-
dicted SNVs found in the 1000 Genomes Project. A Z
score P-value < 0.05 is considered a confident hypothesis.

Exonic variants in oncogenes and tumor suppressor genes
A list of 71 oncogenes and 54 tumor suppressor (TS)
genes were compiled [65]. These two gene sets were then
cross-checked against the genes recorded in the datasets
used previously (Inherited disease, Cancer and 1000 Ge-
nomes with no MAF filter applied). Using these two sub-
sets (oncogenes versus TS) for each of the three data sets,
we applied MutPred Splice (Mixed negative set; Iter. 3) to
identify the proportion of SAVs in these subsets (Table 6).

MutPred splice availability
The latest MutPred Splice model is available online at
[66] or to download for local installation from [67]. The
source code is available from [68]. As new examples of
SAVs are reported in the literature, MutPred Splice will
be retrained so as to incorporate these additional posi-
tive examples of SAVs. This will help to ensure that the
model is kept up to date with developments as they are
reported in the literature. To facilitate the use of
MutPred Splice in an NGS setting, VCF (Variant Call
Format) files can be uploaded (or processed locally) for
analysis.
Results
Identification of informative features for discriminating
between SAVs and SNVs
Ranking the features individually using the AUC of the
ROC (linear SVM; 10-fold cross-validation) using two
different training sets (Disease negative set versus SNP
negative set), allowed us to compare and contrast the
discriminatory importance of the different features used
depending upon the specific negative set being employed
(Figure 1). Training the classifier using the Disease nega-
tive set identified 11 informative features (Figure 1) that
had significantly different AUC values when compared
to the AUC produced by a randomly generated attribute
(random attribute AUC = 50.7%; t-test with Bonferroni
correction; P < 0.05). For the Disease negative set, the
highest ranking features (AUC >70%) were ESR change
(AUC of 81.8%), distance to nearest splice site (AUC of



Mort et al. Genome Biology 2014, 15:R19 Page 11 of 20
http://genomebiology.com/2014/15/1/R19
80.8%) and change in natural splice site strength (AUC
of 76.8%).
Using a classifier trained with the SNP negative set, we

identified 18 informative features (Figure 1) that had sig-
nificantly different AUC values compared to the AUC
produced by a randomly generated attribute (random at-
tribute AUC = 49.8%; t-test with Bonferroni correction;
P < 0.05). For the SNP negative set, the highest ranking
features (AUC >70%) were base-wise evolutionary con-
servation (AUC of 89.1%), distance to nearest splice site
(AUC of 84.8%), ESR change (AUC of 84.3%), evolution-
arily conserved element (AUC of 82.4%), change in
natural splice site strength (AUC of 77.6%) and the
spectrum kernel (AUC of 71.0%). Generally, features that
performed significantly better than random for the Dis-
ease negative set displayed broadly similar performance
irrespective of the training set (Disease negative set or
SNP negative set) employed. This feature ranking using
different negative data sets highlights the importance of
evaluating (and experimenting with) different negative
data sets, because the choice of training data has a sig-
nificant impact upon error rate estimation and the abil-
ity of the classifier to generalize to other data sets [69].

Performance evaluation
We evaluated four different training sets (Table 1) and
three different iterations of each set (Table 2). These dif-
ferent models were evaluated using a previously com-
piled unseen set (not present in any training set), for
which the variants had been experimentally character-
ized with respect to their splicing phenotype (SAV or
SNV). Figure 2 shows the ROC curves for the four dif-
ferent MutPred Splice classification models, generated
using the same unseen test set. In all three iterations
(Iter. 1, Iter. 2 and Iter. 3), the Mixed negative set (which
combines the Disease negative and SNP negative train-
ing data) outperformed the other models within the
same iteration with AUCs of 78.8% (Iter. 1), 78.6%
(Iter. 2) and 83.5% (Iter. 3). The Mixed negative set also
demonstrated the biggest improvement in performance
by employing a semi-supervised approach (as judged by
the AUC) from Iter. 1 to Iter 3, with a 4.7% AUC in-
crease, compared with both the Disease negative set and
the SNP negative set achieving an increase of 1.9%.
Standard performance metrics (in addition to the AUC)
for all training sets and subsequent iterations are dis-
played in Table 4. Interestingly, the SNP negative set ini-
tially (Iter. 1) had the highest false positive rate (FPR;
36.8%) compared with the Disease negative set (7.0%
FPR) and Mixed negative set (7.9% FPR). For all training
sets, the semi-supervised approach employed in Iter 3.
reduced the initial FPR (Iter. 1) and in the case of both
the Disease negative and Mixed negative sets, sensitivity
also increased. Therefore, by the third iteration, the
Mixed negative set was achieving the highest MCC score
of all the training sets (0.54) and the FPR rate had dimin-
ished from 7.9% to 7.0%, whilst sensitivity had increased
from 56.3% to 64.7%. Based on the results of the evalu-
ation, the Mixed negative classification model (Iter. 3) with
a 7.0% FPR, 64.7% sensitivity, 93.0% specificity, 83.5%
AUC and 0.54 MCC was selected as the final MutPred
Splice classification model. Therefore, all further analysis
was performed using this final predictive model.

Case studies
Two inherited disease-causing mutations (neither one of
which was present in either the training data or unseen
test sets) were selected as case studies. These case stud-
ies were used for further additional evaluation of both
the semi-supervised approach and the final predicative
model (Iter. 3). For these mutations, there was no
prior evidence from in vitro analysis for or against an
impact on splicing, when the mutation was originally
reported but subsequent experimental characterization
provided evidence of a splicing defect [25,70] (Figure S1 in
Additional file 2).
To evaluate the semi-supervised approach, a disease-

causing missense mutation in OPA1 (NM_015560.2:
c.1199C > T, NP_056375.2:p.P400L), which we had shown
previously by in vivo assay to result in a 47% decrease in
target exon inclusion [25], was selected. This positive
training example was then deliberately included as a nega-
tive example in the DM-SNV set and our iterative ap-
proach successfully removed this mutation from this
negative training set in Iter. 2 and then correctly relabeled
it as a positive training example in the third iteration of
the model (Iter. 3; Figure 3).

Comparison with existing tools used to identify SAVs
MutPred Splice performance using the full unseen test
set is summarized in Table 4. Here we focus on the
comparison of MutPred Splice with three other tools;
ANNOVAR [61], HSF [36] and Skippy [35] (Table 7).
All tools evaluated here are designed for (but not lim-
ited to) the analysis of exonic variants on pre-mRNA
splicing. ANNOVAR is a popular tool designed for the
functional annotation of genetic variants identified in
NGS studies. ANNOVAR identifies potential splice site
SAVs based on the presence of a particular variant
within a splice site (binary label, presence or absence
within a splice site). Employing this test set of 264 vari-
ants, ANNOVAR achieved an overall sensitivity of
22.7%, a specificity of 95.2% and an MCC of 0.22
(Table 7). For the adjusted ANNOVAR performance
where the positive test set was limited to variants that
abolish the natural splice site only, ANNOVAR identi-
fied all of the splice site SAVs (adjusted sensitivity of
100.0% and MCC of 0.93; Table 7), but as the



Figure 3 Case study illustrating the semi-supervised approach employed in this study. The disease-causing (DM) missense mutation
CM080465 in the OPA1 gene (NM_015560.2: c.1199C > T; NP_056375.2: p.P400L) was not originally reported to disrupt splicing but was later
shown in vitro to disrupt pre-mRNA splicing [25]. CM080465 was included in the negative set in the first iteration (Iter. 1). The Iter. 1 model,
however, predicted CM080465 to disrupt pre-mRNA splicing (SAV). In the next iteration (Iter. 2), CM080465 was excluded from the negative set.
The Iter. 2 model still predicted CM080465 to be a SAV and so, in the final iteration (Iter. 3), this variant was included in the positive set. This
demonstrated that a semi-supervised approach can, at least in some instances, correctly re-label an incorrectly labeled training example. SAV,
splice-altering variant; SNV, splice neutral variant.
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ANNOVAR splicing prediction is based on location
alone (that is, presence in splice site), any potential
splice site SAV should then be assessed with another
tool such as HSF or MaxEntScan [33] to provide fur-
ther supporting evidence that the variant abolishes the
natural splice site. HSF is an online tool used to identify
the effect of genetic variation on a comprehensive
range of known splicing signals, including splice sites
and different sets of ESEs and ESSs. HSF represents a
powerful tool for investigating the underlying mechan-
ism responsible for a given splicing defect, but owing to
the number and range of different splicing signals that
can be investigated, interpretation of the data can be
difficult. Skippy is a tool designed to detect exonic vari-
ants (outside the splice site) that modulate splicing.
Skippy’s focus is on variants that cause exon skipping
via changes to ESEs/ESSs or create cryptic splice sites.
Overall, Skippy demonstrated an MCC of 0.19, which
was comparable to the overall (unadjusted) ANNOVAR
performance. For Skippy, restriction to a positive test
set of exon skipping and cryptic splice site-activating
variants demonstrated increased performance with an
MCC of 0.34.
All tools evaluated here demonstrated utility when in-

vestigating and identifying SAVs. This notwithstanding,
overall, MutPred Splice outperformed the other tools
evaluated here with sensitivity of 66.9%, specificity of
91.6% and an MCC of 0.54 (Table 7). For both HSF
and Skippy, multiple output scores are produced; how-
ever, since none are diagnostic on their own, manual
interpretation is often required to assess the weight of
evidence that a variant is a potential SAV. The strength
of HSF lies in its detailed investigation into the under-
lying splicing signals that may be disrupted; it is there-
fore complementary to MutPred Splice. For example,
MutPred Splice could be used to generate a hypothesis
for an exonic SAV, followed by detailed investigation
using HSF. In general, it is important that the user is
aware of the limitations and applications of a specific
tool, when using that method to interpret their data.



Table 7 Comparison of three existing tools used to identify exonic SAVs with MutPred Splice

Method ANNOVAR Human splicing finder Skippy MutPred splice

Splicing focus Splice site disruption All exonic and intronic ESE/ESS disruption and cryptic splice site All exonic

Prediction output Binary label Multiple output scores Multiple output scores Probabilistic, with additional hypothesis
of splicing mechanism disrupted

TP 41 65 68 (61) 121

FP 4 33 15 7

TN 79 50 68 76

FN 140 (0) 116 113 (57) 60

FPR% 4.8 39.8 18.1 8.4

Sensitivity (%) 22.7 (100.0) 35.9 37.6 (51.7) 66.9

Specificity (%) 95.2 60.2 81.9 91.6

Accuracy (%) 58.9 (97.6) 48.1 59.7 (66.8) 79.2

MCC 0.22 (0.93) -0.04 0.19 (0.34) 0.54

Evaluation was based on 264 exonic variants (181 positive, 83 negative). Performance metrics are given for guidance only as not all tools may be directly
comparable (due to different applications or limitations). Performance scores in parentheses reflect adjusted performance based upon the evaluation of only
specific categories of splicing mutation (for example, splice site disruption) relevant to the respective tool. For methods that output multiple scores for a variant
(HSF and Skippy), performance metrics may differ depending upon the features and thresholds applied. TP, true positives; FP, false positives; TN, true negatives;
FN, false negatives; FPR, false positive rate; MCC, Matthews correlation coefficient.
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Depending upon the application, we recommend using
multiple methods, especially tools that are comple-
mentary to each other.

Mis-splicing as a functional consequence of exonic variants
To assess the extent of mis-splicing as a functional con-
sequence of exonic variants (missense, same-sense and
nonsense), the final MutPred Splice model was applied
to three data sets; inherited disease-causing mutations
from HGMD, somatic cancer-associated mutations (in-
cluding drivers and passengers) from COSMIC, and ex-
onic variants identified in the 1000 Genomes Project
(Figure 4). Overall, inherited disease (16.0% of the data
set) and cancer (10.4% of the data set) were significantly
enriched for predicted SAVs compared to variants found
in the general population (1000 Genomes Project;
no MAF filter applied; 6.8%; Fisher’s exact test with
Bonferroni correction; P < 0.05). We see similar enrich-
ment trends when we separate each data set into the dif-
ferent subtypes of coding-region variant (missense,
same-sense and nonsense). With respect to missense
variants, 11.0% of Inherited disease mutations and 9.2%
of Cancer mutations were significantly enriched for
SAVs compared to 6.8% from variants identified in the
1000 Genomes Project data (Fisher’s exact test with
Bonferroni correction; P < 0.05). For same-sense muta-
tions, 90.3% of inherited disease mutations are predicted
to be SAVs, whereas the remaining 9.6% may have an
impact upon other mechanisms of pathogenesis (for ex-
ample, through codon usage). Predicted same-sense
SAVs in the Cancer data set were significantly enriched
when compared to the 1000 Genomes Project same-
sense variants (8.6% versus 6.7%; Fisher’s exact test with
Bonferroni correction; P < 0.05). Nonsense mutations in
disease (both Cancer and Inherited) were more highly
enriched for exonic variants responsible for splicing de-
fects than nonsense variants identified in 1000 Genomes
Project data (30.5% and 32.4% versus 19.5% respectively;
Fisher’s exact test with Bonferroni correction; P < 0.05).
When looking at the different types of mutation (mis-
sense, same-sense and nonsense), we find that a non-
sense mutation is approximately three-fold more likely
to elicit a splicing defect compared to a missense or
same-sense mutation. This result is consistent with what
has been shown previously [18,25] and has been attrib-
uted to the inherent sequence bias of ESE loss and ESS
gain towards nonsense mutations. It is important to note
that a nonsense mutation may affect pre-mRNA splicing
before it can impact on mRNA export or translation. Al-
though the resulting aberrant transcript may still be
bound for degradation by nonsense-mediated decay, it
may be due to a splicing induced frame-shift rather than
the original nonsense mutation recognized as a prema-
ture termination codon. For exonic variants identified in
the general population, a missense or same-sense variant
is equally likely to elicit a splicing defect.

Predicting the splicing mechanism disrupted by an SAV
Using MutPred Splice, confident hypotheses for the
underlying mechanism of splicing disruption were made
for the majority of SAVs in Inherited disease (63.5%) and
Cancer (66.3%) (Figure 5). In Inherited disease, the
main underlying splicing mechanism disrupted was loss
of the natural splice site accounting for 37.9% of SAVs,
followed by cryptic splice site activation with 32.0%.
ESE loss and/or ESS gain leading to exon skipping was



Figure 4 Role of exonic variants in aberrant mRNA processing for Inherited disease and Cancer data sets. The somatic Cancer variants
were derived from COSMIC and include both driver and passenger mutations. For all mutation types and the combined total, the proportions of
predicted SAVs in both Inherited disease and Cancer were significantly enriched (Fisher’s exact test with Bonferroni correction applied; P < 0.05)
when compared to exonic variants identified in the 1000 Genomes Project (unlike the SNP negative training set, in this instance no MAF filter
was applied, that is, all rare and common variants were included).
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predicted for 29.3% of SAVs. Exon retention of an alter-
native exon was predicted to be the splicing defect in
only 0.8% of SAVs. By contrast, for SAVs in Cancer, the
predominant mechanism was ESE loss and/or ESS gain
(38.7%), with Cancer being significantly enriched for
SAVs causing ESE loss and/or ESS gain compared to
Inherited disease (Fisher’s exact test with Bonferroni
correction applied; P < 0.05).

Exonic SAVs in oncogenes and tumor suppressor genes
Sets of 71 oncogenes and 54 TS genes were selected as
described in Materials and methods. Disease-causing
mutations in TS genes tend to be recessive loss-of-
function (inactivating), in contrast to mutations in onco-
genes, which are usually dominant gains-of-function
(activating). The numbers of reported variants in these
two gene sets (oncogenes versus TS) are given in Table 6.
When comparing each gene set within the same data set
(Inherited disease, Cancer and 1000 Genomes), we see
that exonic variants in Inherited disease (25.3%) and Can-
cer (16.0%) are significantly enriched for SAVs in TS genes
compared to oncogenes (Figure 6). This enrichment for
SAVs in TS genes is not found when looking at vari-
ants that are present in the general population (1000
Genomes). These data suggest that aberrant pre-
mRNA splicing may be a common mechanism for in-
activation of TS genes. Including the data presented in
Figure 5, we propose the provocative hypothesis that
TS gene architecture may be particularly ‘fragile’ in the
sense that they have both inflated proportions of SAVs
and higher rates of loss/gain of ESR elements than
other genes. If this hypothesis is correct, then when we
attempt to identify somatic drivers in cancer in an
NGS setting, the potential impact of all types of exonic
variant (missense, same-sense and nonsense) on pre-
mRNA splicing should be highlighted rather than



Figure 5 Confident hypotheses of the underlying splicing mechanism disrupted for predicted exonic SAVs in Inherited disease and
somatic variants in Cancer. Significant enrichment (+) or depletion (-) for a specific hypothesis is shown for the Cancer versus Inherited disease
datasets (Fisher’s exact test with a Bonferroni-corrected threshold of P < 0.05).
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neglected. Future studies that investigate the aspects of
gene architecture that are responsible for an increased
susceptibility to aberrant pre-mRNA splicing may illu-
minate the validity of this hypothesis.

Discussion
There is abundant evidence to suggest that, for both
coding and non-coding variants, aberrant pre-mRNA
splicing is a common mechanism of pathogenesis in
both inherited disease and cancer. In order to predict
potential disease severity from genotype data, it is ne-
cessary to comprehensively evaluate the potential func-
tional impact of variants. Effective computational tools
targeted towards the characterization of the impact of
variants on posttranscriptional gene regulatory function
are urgently required. Here we have developed and
evaluated a novel computational model (MutPred
Splice) that uses human disease alleles for training to
predict exonic nucleotide substitutions that disrupt
pre-mRNA splicing. This approach is complementary
to other methods that utilize known splice sites or
functional variants that have not been directly associ-
ated with disease. Since MutPred Splice predictions
can be made for missense, same-sense and nonsense
variants, this tool significantly expands the scope of
existing tools, which tend to focus almost exclusively
on missense variants. When applied in an NGS setting,
MutPred Splice is designed to be run in parallel with
other methods such as SIFT [2] or SNAP [6], which
identify missense mutations that are likely to disrupt
protein structure/function; however, it adds an add-
itional degree of resolution because MutPred Splice is
also able to assess same-sense variants, which are typ-
ically excluded by the majority of current NGS filter-
ing strategies. Since we predict that approximately 7%
of same-sense variants disrupt pre-mRNA splicing, it
is clear that this class of variant should not be blithely
dismissed from the outset as being neutral to function.
Training data
In this study, we have highlighted the difficulty in select-
ing an appropriate negative training set. Since the under-
lying training data are fundamental to any derived
model, it is clear that selecting the appropriate negative
(control) set is of equal importance to selecting the ap-
propriate positive set. In this study, we found that high
frequency SNPs are a valuable source of training data
but combining high frequency SNPs with an additional
negative set of inherited disease-causing mutations
serves to increase the diversity in the training set and re-
duces the FPR of the model, which results in improved
performance over a model built using either negative set
on its own.



Figure 6 Proportion of exonic variants involved in aberrant mRNA processing for a set of tumor suppressor genes (71 genes) and a
set of oncogenes (54 genes), from three different data sets (Inherited disease, somatic mutations in Cancer, and variants identified in
the 1000 Genomes Project with no MAF filter applied, that is, all rare and common variants included). Disease-causing substitutions in
tumor suppressor (TS) genes tend to be recessive loss-of-function mutations, in contrast to disease-causing substitutions in oncogenes, which are
usually dominant gain-of-function mutations. Inherited disease and Cancer are significantly enriched in the TS gene set (denoted by an asterisk),
when compared with the equivalent set of oncogenes, for mutations that are predicted to result in aberrant mRNA processing (SAVs). P-values
were calculated using a Fisher’s exact test with a Bonferroni-corrected threshold of P < 0.05.
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Classification performance
The lack of experimental splicing data for the majority
of disease-causing missense mutations means that the
vast majority of this data set is untested with respect
to their impact on the mRNA splicing phenotype
(positive or negative). To mitigate this unknown quan-
tity, in the second iteration of our models we removed
predicted SAVs from the negative set; however, model
performance remained broadly constant. This demon-
strates that the RF ensemble approach used through-
out all iterations to balance the positive and negative
sets also reduces the impact of noise in the negative
set. Based on previous studies that found that approxi-
mately 25% of disease-causing missense mutations may
disrupt splicing [23-25], we adopted a semi-supervised
self-training approach in an attempt to label these un-
labeled mutation data. This allowed us to utilize these
unlabeled data in a novel way, increase the training set
size and improve the identification of decision bound-
aries between positive and negative classes. Indeed,
utilization of semi-supervised learning in this instance
saw a performance increase for all models (Disease
negative set, SNP negative set and Mixed negative set).
Self-training does have its limitations and mistakes in
the first iteration could be subsequently reinforced; to
mitigate this, only confident labels were applied to ex-
pand the training sets. For the final MutPred Splice
model, we selected the third iteration of the Mixed
negative set, which when coupled with a conservative
probability threshold (at the expense of sensitivity) be-
comes a useful model for prioritizing SAVs, especially
in an NGS setting, with a FPR of 7.0%, sensitivity of
64.7% and specificity of 93.0%, AUC of 83.5% and an
MCC of 0.54.
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Exonic SAVs in inherited disease and cancer
Based on previous work and also as demonstrated here,
disruption to pre-mRNA splicing via exonic substitu-
tions underlies a large proportion of inherited disease
and cancer mutations. Here we estimate, based on the
sensitivity and specificity of our model, that approxi-
mately 16% of inherited disease and approximately 10 to
14% of cancer exonic mutations impact upon pre-
mRNA splicing, probably as a primary mechanism for
pathogenicity. This is broadly in line with the results of
previous studies. It should be noted, however, that the
cancer set analyzed will contain a large proportion of
passenger variants, which will almost certainly lead to
a serious under-estimation of the actual number of
splicing-sensitive cancer driver mutations.
In recent years, evidence for the link between cancer

development and aberrant splicing has grown [71,72]. In
this study, we have found that TS genes are significantly
enriched (when compared to oncogenes) in predicted
exonic splicing mutations in both inherited disease and
cancer. This enrichment is not found in variants identi-
fied in the general population (Figure 6; 1000 Genomes
Project data with no MAF filter applied). Interestingly,
the disease-causing nonsense variant in the ATM gene
(p.E1978X), which is experimentally demonstrated to
cause exon skipping, was originally reported as causing
ataxia telangiectasia [73] but has in addition been associ-
ated with breast cancer susceptibility [74].
Aberrant pre-mRNA splicing in TS genes caused by

exonic variants may represent a common mechanism of
TS gene inactivation, thereby contributing to oncogen-
esis. Whilst a role for aberrant splicing leading to TS
gene loss-of-function is not altogether novel [75], the
scale and potential involvement of splice-altering exonic
variants in oncogenesis is not well studied. The Cancer
dataset has an increased tendency towards loss of ESE
and/or gain of ESS elements (compared to the Inherited
disease dataset). This finding could be explicable in
terms of an increased susceptibility of TS genes to aber-
rant splicing.

Variants affecting pre-mRNA splicing in the general
population
Here we have shown that around 7% of exonic variants
found in the general population may alter splicing. Such
variants may exert their effects in different ways, from a
subtle change that serves to modify gene expression
levels, to a lesion that results in the complete deficiency
of the functional protein product. In some cases, there-
fore, the impact of common variants on splicing may
not have an obvious phenotypic effect but could never-
theless serve to modulate disease risk, especially in the
context of complex disease; alternatively, it may act as a
disease modifier. Interestingly, not all nonsense variants
can be considered equal with respect to their impact on
splicing. A nonsense mutation identified in the context
of inherited disease or cancer is predicted to be approxi-
mately twice as likely to elicit a splicing defect when
compared to a nonsense variant found in the general
population. Since this study was initiated and the train-
ing set compiled, six variants that were initially found in
the general population (1000 Genomes Project), and
which MutPred Splice predicted to disrupt pre-mRNA
splicing, have been subsequently reported as disease-
causing, disease-associated or of functional significance
(according to HGMD). For example, a predicted SAV in
the NPR3 gene (NM_000908.3: c.1429G >A; NP_000899.1:
p.G477S) is associated with reduced NPR3 protein expres-
sion [76]. Another example is a predicted SAV in the
MACF1 gene (NM_012090.4: c.6868A >G; NP_036222.3:
p.M2290V), which has been reported in association with
type 2 diabetes [77]. Interestingly, all six of these pre-
dicted SAVs were also predicted to be tolerated by SIFT,
highlighting the importance of using MutPred Splice in
conjunction with other tools specifically designed to iden-
tify missense mutations that disrupt protein structure and/
or function (for example, SIFT and Polyphen2, and so on).

Limitations
Whilst the positive training set of SAVs employed here
constitutes the largest available dataset of its kind, it is
likely that a larger positive training set would be of con-
siderable benefit. The other limitation is the ‘noise’ from
actual SAVs in the Disease negative set. The semi-
supervised approach was therefore employed to counter-
act these limitations. The MutPred Splice model will be
retrained as more training data become available in the
literature. Additionally, our current knowledge about the
splicing code is still incomplete; for example, approxi-
mately 9% of exon skipping SAVs displayed no obvious
changes in ESE/ESS elements [35], indicating that novel
cis-acting splicing regulatory elements probably remain
to be discovered. As our knowledge in this field ad-
vances, more informative features can be derived and
incorporated.
Another limitation of our tool is the assumption that

the single exonic variant that is being assessed for aber-
rant splicing is the only deviation between the relevant
reference sequence (RefSeq), with no other relevant se-
quence changes being present. To illustrate this point,
only 4.8% of patients in a large cohort of Duchenne
muscular dystrophy patients were found to exactly
match the coding region of the DMD gene with respect
to the reference sequence [78]. Therefore, when consid-
ering the impact on the splicing code, it may be in some
cases too simplistic to consider just one variant in isola-
tion, because other sequence changes (in cis), within
both the coding and non-coding regions, may strengthen
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or weaken exon definition; the resulting combined im-
pact is therefore difficult to predict.
We note that statistically rigorous estimation of the

fraction of variants (in a particular set) that disrupt spli-
cing is a very difficult problem, caused by potentially
biased training data combined with a general inability to
achieve 100% classification accuracy. As the correction
of sample selection bias is generally hard, in this work
we chose to report the fraction of positive predictions by
MutPred Splice as our best estimate.

Conclusion
We have used the most comprehensive splicing mutation
data sets currently available to build a computational
model to predict exonic substitutions that disrupt pre-
mRNA splicing. To do this, we have adopted a machine
learning approach using semi-supervised learning and
have evaluated a combination of sequence-based and gen-
omic attributes to build a new tool, MutPred Splice, to
identify coding region splice-altering variants responsible
for either somatic or inherited disease. This model is suit-
able for use in an NGS high-throughput setting to identify
and prioritize potentially splice-altering variants that may
be involved in both inherited disease and cancer.

Additional files

Additional file 1: Table S1. 1,189 putative SAVs derived from HGMD
employed in this study. Table S2. unseen test set of 352 variants
(238 SAVs and 114 SNVs) employed in this study.

Additional file 2: Figure S1. experimental validation of exon skipping
for a true positive MutPred Splice prediction (Mixed negative set,
Iter. 3). The disease-causing mutation CM980147 (NM_000051.3: ATM
c.5932G > T; NP_000042.3: p.E1978X), which is not present in any training
data or the unseen evaluation test set, was predicted by MutPred Splice
to disrupt splicing. (A) Schematic diagram of the exons assayed by RT-
PCR. The mutation in exon 41 is indicated. (B) RT-PCR analysis of spliced
mRNA isoforms from mutant or wild-type ATM genes. This experiment
compares splicing of ATM pre-mRNA in patient-derived lymphoblastoid
cells (E1978X) and HEK293 cells (wild type). Amplicons derived from
different ATM mRNA isoforms were by resolved by 1% agarose gel
electrophoresis. Figure S2. novel ESR hexamer score function (ESR-HS)
to express the relationship between disease-causing and common
putatively neutral variants and their differential distributions with respect
to loss or gain of an ESE or ESS. Frequencies corresponding to disease-
causing mutations (red) and common SNPs (blue) are shown. See Materials
and methods for more details.
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