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Abstract

We present GraphProt, a computational framework for learning sequence- and structure-binding preferences of
RNA-binding proteins (RBPs) from high-throughput experimental data. We benchmark GraphProt, demonstrating that
the modeled binding preferences conform to the literature, and showcase the biological relevance and two
applications of GraphProt models. First, estimated binding affinities correlate with experimental measurements.
Second, predicted Ago2 targets display higher levels of expression upon Ago2 knockdown, whereas control targets
do not. Computational binding models, such as those provided by GraphProt, are essential for predicting RBP binding
sites and affinities in all tissues. GraphProt is freely available at http://www.bioinf.uni-freiburg.de/Software/GraphProt.

Background
Recent studies have revealed that hundreds of RNA-
binding proteins (RBPs) regulate a plethora of post-
transcriptional processes in human cells [1-3]. The gold
standard for identifying RBP targets are experimen-
tal cross-linking immunoprecipitation-high-throughput
sequencing (CLIP-seq) protocols [4-6]. Despite the
great success of these methods, there are still some
problems to overcome: (1) the data may contain many
false positives due to inherent noise [7,8]; (2) a large
number of binding sites remain unidentified (a high false-
negative rate), because CLIP-seq is sensitive to expres-
sion levels and is both time and tissue dependent [9] and
(3) limited mappability [10] and mapping difficulties at
splice sites lead to further false negatives, even on highly
expressed mRNAs. To analyze the interaction network of
the RBPome and thus to find all binding sites of a spe-
cific RBP, a CLIP-seq experiment is only the initial step.
The resulting data requires non-trivial peak detection to
control for false positives [7,8]. Peak detection leads to
high-fidelity binding sites; however, it again increases the
number of false negatives. Therefore, to complete the RBP
interactome, computational discovery of missing bind-
ing sites is essential. The following describes a typical
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biological application of computational target detection.
A published CLIP-seq experiment for a protein of inter-
est is available for kidney cells, but the targets of that pro-
tein are required for liver cells. The original CLIP-seq
targets may have missed many correct targets due to dif-
ferential expression in the two tissues and the costs for
a second CLIP-seq experiment in liver cells may not
be within the budget or the experiment is otherwise not
possible. We provide a solution that uses an accurate
protein-binding model from the kidney CLIP-seq data,
which can be used to identify potential targets in the entire
transcriptome. Transcripts targeted in liver cells can be
identified with improved specificity when target predic-
tion is combined with tissue-specific transcript expression
data. Generating expression data is likely cheaper than a
full CLIP-seq experiment.
Computational target detection requires large num-

bers of highly reliable binding sites for training a
binding model. Modern experimental methods such as
RNAcompete [3,11] and CLIP-seq [4-6] give a bet-
ter characterization of RBP-binding specificities due to
two important aspects: (1) the number of binding sites
available formodel training is increased from tens to thou-
sands of sequences and (2) detection of exact binding loca-
tions is more precise, ranging from about 30 nucleotides
for RNAcompete and high-throughput sequencing of
RNA isolated by CLIP (HITS-CLIP) [4] tomeasurements
at the nucleotide level for individual-nucleotide resolution
CLIP (iCLIP) [5] and photoactivatable-ribonucleoside-
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enhanced CLIP (PAR-CLIP) [6]. A major qualitative dif-
ference between CLIP-seq and RNAcompete data is
that the latter determines relative binding affinities in
vitro, whereas CLIP-seq detects binding events in vivo.
There is a clear deficit of computational tools suited to

detecting RBP binding sites to date; however, a multitude
of sequence-motif discovery tools have been developed to
detect DNA-binding motifs of transcription factors [12].
Popular examples are MEME [13], MatrixREDUCE [14]
and DRIMust [15]. In the past, some of these methods
have also been applied to the analysis of RBP-bound RNAs
[16-18].
It has been established that not only sequence, but also

structure, is imperative for detecting RBP binding [17,19].
The first tools to introduce structural features into target
recognition were BioBayesNet [20] for transcription
factor binding sites and MEMERIS [21] for the recognition
of RBP targets. MEMERIS is an extension of MEME using
RNA accessibility information to guide the search towards
single-stranded regions. A recent approach and the cur-
rent state of the art for learning models of RBP bind-
ing preferences is RNAcontext [17,22]. RNAcontext
extends accessibility information to include the type of
unpaired regions (external regions, bulges, multiloops,
hairpins and internal loops). RNAcontext was shown
to outperform MEMERIS and a sequence-based approach,
MatrixREDUCE, on an RNAcompete set of nine RBPs
[17].
Available approaches that introduce a secondary struc-

ture into motif detection have two weaknesses. First, a
single-nucleotide-based structure profile is used, that is,
a nucleotide is considered paired or unpaired (or part
of a specific loop). Second, the main assumption behind
these models is that nucleotide positions are scored inde-
pendently. While this assumption seems to work well for
RBP motifs located within single-stranded regions, posi-
tional dependencies arise when structured regions (that
is base-pairing stems) are involved in binding recognition:
binding to double-stranded regions involves dependen-
cies between base pairs, which lead to distant stretches
of nucleotides in the sequence that can affect the binding
affinity [23-27].
The general requirements for accurate binding models

are thus manifold. First, training data nowadays comprise
several thousands of RBP-bound sequences, therefore,
identification of sequence and structure similarities must
be computationally efficient. This excludes the use of con-
ventional alignment-based methods (such as LocaRNA
[28,29] and RNAalifold [30]). Second, both sequence and
structure interdependencies should be modeled, which
cannot be achieved by structure-profile-based approaches
[17,21,31]. Third, models should be robust with respect
to noisy data and be able to take quantitative binding
affinities into account.

Results and discussion
We present GraphProt, a flexible machine-learning
framework for learning models of RBP binding prefer-
ences from different types of high-throughput experimen-
tal data such as CLIP-seq and RNAcompete. Trained
GraphProt models are used to predict RBP binding
sites and affinities for the entire (human) transcriptome,
regardless of tissue-specific expression profiles. We start
with a schematic overview of the GraphProt framework
and highlight the advantages of this approach. For the first
time, in spite of the huge amount of data, we make use of
the full secondary structure information by relying on an
efficient graph-kernel approach.
We establish that GraphProt has robust and improved

performance in comparison to the state of the art
by evaluating prediction performance for 24 sets of
CLIP-seq and nine sets of RNAcompete data. Predic-
tion performance was clearly improved in comparison to
RNAcontext [17,22] and even more clearly in compari-
son to a sequence-only-based approach, MatrixREDUCE
[14], which was added to accentuate the importance of
considering secondary structure. To gain further insight
into the binding preferences learned by GraphProt
models, we devised a procedure to extract simplified
sequence and structure binding motifs that could be visu-
alized as well-known sequence logos. We compared our
motifs with current data on binding specificities and
found substantial agreement.
Finally, we showcase two possible applications that con-

solidate the biological relevance of GraphProt models.
First, we estimated affinities for PTB binding sites when
training on CLIP-seq data without access to affinity
measurements. As a control, we compared these esti-
mated affinities with additional experimental measure-
ments and observed a significant correlation. Thus, our
binding models can learn from simple binding and non-
binding information to differentiate between strong and
weak binding sites. Second, using a GraphProt model
trained on a set of Ago2 HITS-CLIP sites, we veri-
fied that predicted Ago2 targets are in agreement with
changes in transcript expression levels upon Ago2 knock-
down. The same trend was not observed for the orig-
inal HITS-CLIP-detected sites, clearly indicating that
GraphProt identifies binding sites missed by the high-
throughput experiment.

The flexible GraphProt framework
The main application of the GraphProt framework is to
learn binding preferences using CLIP-seq data and to
apply trained models to (1) detect motifs of sequence and
structure binding preferences and (2) predict novel RBP
target sites within the same organism. Figure 1 presents a
schematic outline of the GraphProt framework. There
are two main phases, a training and an application phase.
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Figure 1 Schematic overview of the GraphProt framework.
CLIP-seq, cross-linking and immunoprecipitation sequencing; RBP,
RNA-binding protein.

In the training phase, RBP binding sites and unbound sites
are derived from CLIP-seq data. Highly probable sec-
ondary structures (using RNAshapes) are calculated in
the context of each potential target site and each struc-
ture is encoded as a hypergraph (see Figure 2A) containing
both sequence and full secondary structure information.
Features are extracted from the hypergraphs using effi-
cient graph kernels. Finally a model is trained using a
standard machine-learning approach. In the application
phase, the trained models are either (1) processed fur-
ther to generate sequence and structure logos of learned
binding preferences or (2) used in a scanning approach
to predict (novel) RBP binding sites. The predictions can
be viewed as a profile over the entire transcript from
which only high-scoring sites can be selected. Note that
when affinity measurements are available for a large set
of binding sites, we can train a regression model on these
measurements, instead of classifying sites as bound or
unbound. In this case affinities are learned and predicted
directly. In subsequent results, however, we show that
GraphProt can also accurately predict binding affinities
when no affinity data are available for training.

In the following, we highlight special features of
GraphProt that are not found in RBP-binding predic-
tion tools in the literature.

A natural encoding for RNA-binding protein binding sites
Conventional feature encoding in RNA-binding models
uses aggregate probabilities per nucleotide to character-
ize RNA structure, that is, models integrate a structure
profile of the bound sequence [17,31,32]. The most com-
mon measurement is accessibility, which is the probabil-
ity that a nucleotide is unpaired [33,34]. Accessibility is
used by MEMERIS [21]. In addition, RNAcontext [17]
extends accessibility as the probability that an unpaired
nucleotide is located within a specific type of loop (for
example, a hairpin, bulge or multiloop). These single-
nucleotide structure profiles allow encoding of the RBP
target sites in sequential data structures, which guaran-
tees higher computational efficiency. The downside of
structure profiles is that the original structure information
of the RNA molecule is severely compressed: instead of
storing exact base-pairing information, only the marginal
binding propensity of one nucleotide towards all other
nucleotides is considered.
We propose a representation that is more natural and

fully preserves base-pairing information (Figure 2). The
key idea is to use a small set of stable structures to
represent probable folding configurations on the mRNA
in the surrounding context of RBP binding sites. These
structures are then encoded as graphs with additional
annotations for the type of substructure, that is, multi-
loops, hairpins, bulges, internal loops, external regions
and stems (see Figure 2B).

Advantages of graph-kernel features
To efficiently process RNA structures encoded as graphs,
we propose a method based on graph kernels. The main
idea is to extend the k-mer similarity for strings (which
counts the fraction of common small substrings) to graphs
and finally to fit a predictive model using algorithms from
the Support Vector Machine (SVM) family [35] for clas-
sification problems and Support Vector Regression (SVR)
[36] when affinity information is available.
Using a graph-kernel approach, we extract a very large

number of features (that is small disjoint subgraphs, see
Figure 2C and Materials and methods for details) in a
combinatorial manner and assess their importance in dis-
criminating between bound and unbound regions on an
mRNA. The use of disjoint subgraphs gives a binding
motif that is more expressive than the one offered by tra-
ditional position specific scoring matrices [37] because
it takes the simultaneous interdependencies between
sequence and structure information at different loca-
tions into account. Feature importance information can
be used, not only to build accurate predictors, but can be
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Figure 2 Natural encoding of RBP-bound sites and graph-kernel features. (A) The region identified in the CLIP-seq experiment (yellow) is
symmetrically extended by 150 nucleotides to compute representative secondary structure information. (B) The RNA secondary structure of each
RBP-bound context is represented as a graph. Additional information on the type of substructures (that is whether a group of nucleotides is located
within a stem or within one of the loop types) is annotated via a hypergraph formalism. (C) A very large number of features is extracted from the
graphs using a combinatorial approach. A valid feature is a pair of small subgraphs (parametrized by a radius R) a small distance apart (parametrized
by a distance D). The feature highlighted in orange is an example of a feature that can account for the simultaneous interdependencies between
sequence and structure information at different locations. CDS, coding sequence; CLIP-seq, cross-linking and immunoprecipitation sequencing; nt,
nucleotide; RBP, RNA-binding protein.

subsequently processed to identify sequence and structure
binding preferences.

GraphProt learns binding preferences from CLIP-seq
data to predict new target sites
Computational approaches for predicting RBP binding
sites require large amounts of training data. The cur-
rent increase in the number of available CLIP-seq
data sets make these a valuable data source of target
sites bound by specific RBPs. To benchmark the ability
of GraphProt to detect binding preferences of RBPs
from human CLIP-seq data, we used 24 sets of HITS-
CLIP-, PAR-CLIP- and iCLIP-derived binding sites:
23 were curated by doRiNA [38] and an additional set
of PTB HITS-CLIP binding sites was taken from [39]
(Additional file 1). The Ago1-4 and IGF2BP1-3 sets con-
tain combined binding sites of several proteins; four of
the sets consist of ELAVL1 binding sites derived by both
HITS-CLIP and PAR-CLIP. Other proteins included
are ALKBH5, C17ORF85, C22ORF28, CAPRIN1, EWSR1,
FUS, HNRNPC, MOV10, PTB, PUM2, QKI, SFRS1,
TAF15, TDP-43, TIA1, TIAL1 and ZC3H7B.
The ability of a computational method to detect RBP

target sites is assessed using the well-known tenfold cross-
validation technique. The data is subdivided into ten seg-
ments. A model of binding preferences is trained on nine
segments and target sites are predicted using the remain-
ing segment (see Additional file 2 for details). Results are

averaged over ten different train-and-test experiments.
This technique assesses the ability of a method to pre-
dict RBP target sites that were not seen during training
(this is analogous to the prediction of novel sites). The
performance is measured as the area under the receiver
operating characteristic curve (AUROC).
We compared the performance of GraphProt to

RNAcontext [17] and MatrixREDUCE [14]. Matrix
REDUCE was added to the benchmark comparison
because it is a sequence-based method that previ-
ously displayed promising results in a comparison
with RNAcontext [17] (the current state of the art).
GraphProt uses an extended sequence context for struc-
ture prediction, but centers on the CLIP-seq sites using
the viewpoint technique (Figure 2A). For a fair compari-
son, the same context sequences (for structure prediction)
and viewpoint information (for target sites) were used by
RNAcontext and MatrixREDUCE (see Materials and
methods).
GraphProt outperformed RNAcontext for 20 of

the 24 sets, showing an average 29% relative error
reduction (Figure 3, Additional file 2). RNAcontext
scored only marginally better for the remaining four
sets (only a 6% relative error reduction on average).
For 11 sets, the improvement in relative error reduction
of GraphProt over RNAcontext was over 30%. The
largest improvements were a 59% relative error reduc-
tion for CAPRIN1 (from AUROC 0.65 to 0.86) and a
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Figure 3 GraphProt performed well in detecting missing binding sites for all RBPs. Prediction performance was measured using AUROC
stemming from a tenfold cross-validation (y-axis) on 24 CLIP-seq sets (x-axis) for GraphProt, RNAcontext and MatrixREDUCE.
GraphProt and RNAcontext consider sequence and structure information, whereas MatrixREDUCE is only sequence based.
MatrixREDUCE results below 0.5 are not shown. See Additional file 2 for the full table of results. AUROC, area under the receiver operating
characteristic curve; CLIP-seq, cross-linking and immunoprecipitation sequencing; HITS-CLIP, high-throughput sequencing of RNA isolated by
cross-linking immunoprecipitation; iCLIP, individual-nucleotide resolution cross-linking and immunoprecipitation; PAR-CLIP,
photoactivatable-ribonucleoside-enhanced cross-linking and immunoprecipitation; RBP, RNA-binding protein.

62% relative error reduction for AGO1-4 (from AUROC
0.72 to 0.90). Although MatrixREDUCE scored worse
than either GraphProt or RNAcontext for all 24 sets,
there are some sets where MatrixREDUCE performed
nearly as well as the structure-based methods. Never-
theless, it more or less fails for eight data sets. Overall,
GraphProt shows robust prediction accuracies and out-
performs existing methods.

GraphProt learns binding preferences from RNAcompete
data
The affinity of an RBP to its target site is important for the
effectiveness of the subsequent regulation. This implies
that a classification into bound and unbound sequences
is only a coarse approximation. Instead, a regression
approach that can distinguish target sites according to
their binding strength is more suitable. To model this
binding strength, we require a training set with the
affinities for different sequences instead of just a list
of bound regions. Such measurements are provided by
RNAcompete, an in vitro assay used to analyze recog-
nition specificities of RBPs [11]. To measure affinities, a
pool of short RNAs, designed to include a wide range
of k-mers in both structured and unstructured contexts,
is exposed to a tagged RBP. The resulting RNA-protein
complexes are pulled down and the abundance of bound
RNA is measured. Relative binding affinity is then defined

as the log ratio between the amount of pull-down RNA
and the amount of RNA in the starting pool. Although
a modified version of the RNAcompete protocol was
published recently [3], the data were not suitable for evalu-
ating GraphProt as the experiment was designed in such
a way that it uses only unstructured sequences.
We evaluated the ability of GraphProt to predict

binding affinities accurately in a regression setting using
the RNAcompete sets for nine RBPs from the initial
RNAcompete assay: Vts1p, SLM2, YB1, RBM4, SFRS1,
FUSIP1, ELAVL1, U1A and PTB [11]. All sets included
both structured and unstructured sequences. The per-
formance of affinity predictions was measured using the
mean average precision (APR).
GraphProt outperformed RNAcontext for all pro-

teins except Vts1p, for which RNAcontext scored
marginally better (Figure 4, Additional file 2). For five of
the proteins, the improvement in relative error reduction
was over 30%. The largest improvements in relative error
reduction were achieved for FUSIP1 (67%) and SFRS1
(71%). Note that MatrixREDUCE is not shown as previ-
ously it did not perform as well as RNAcontext for the
exact same data and analysis procedure [17].

GraphProt models capture known binding preferences
Kernel-based methods allow the use of more complex fea-
tures and thus an improved prediction performance. On
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Figure 4 GraphProt uses a regression model to predict
binding affinities frommeasurements derived by RNAcompete
with improved precision.We present the mean APRs (y-axis) for two
independent RNAcompete sets (x-axis), both comprising nine RBPs,
comparing GraphProt and RNAcontext
sequence-and-structure-based models. APR, average precision; RBP,
RNA-binding protein.

the downside, kernel approaches usually do not provide an
insight into what the model has learned. Since this insight
is useful for assessing the biological relevance of the
CLIP-seq models, we devised a novel post-processing
step to identify the sequence and structure preferences
learned by the models (see Materials and methods). Note
that these logos are a mere visualization aid and do not
represent the full extent of the information captured by
GraphProtmodels.
When compared with data from the literature (Figure 5),

we found that GraphProt motifs for SFRS1, ELAVL1
and PTB closely match known SELEX consensus motifs
[40-42]. For TDP43, GraphProt identifies a prefer-
ence for repeated UG dinucleotides. TDP43 targets,
determined by RNA immunoprecipitation followed by
microarray analysis (RIP-chip), contained such repeats
in 80% of the 3′ UTRs [43]. GraphProt motifs for
PUM2, QKI and IGF2BP1-3 closely resemble the motifs
previously identified using the same PAR-CLIP sets [6].
The motifs identified in [6], however, are based on the
top sequence read clusters while the GraphProt model
was trained using the full sets of PAR-CLIP sites. FUS
was found to bind AU-rich loop structures according
to electrophoretic mobility shift assays (EMSA) [44]. In
accordance with this, the GraphProt structure motif in
Figure 5 shows a preference for stems at the borders, but
not at the center of the motif. The three members of the
FET protein family (FUS, TAF15 and EWSR1) have sim-
ilar PAR-CLIP binding profiles [44], explaining the stun-
ning similarity of the corresponding GraphProt motifs.
Three of the GraphProt motifs (HNRNPC, TIA1 and
the closely related TIAL1) show a preference for U-rich

sites. HNRNPC was reported to bind to poly-U tracts in
3′ and 5′ UTRs [5,45,46]. TIA-1 has been described as an
ARE-binding protein and binds both U-rich and AU-rich
elements. The preference for U-rich regions was shown
using SELEX [47], cross-linking and immunoprecipitation
[48] and isothermal titration calorimetry (ITC) [49]. Just
recently, the high affinity toward binding to U-rich RNA
could be traced to six amino acid residues in the TIA1
RNA recognition motif 2 (RRM2) [50].

RNA structure improves prediction of RNA-binding protein
binding
Previous benchmarking analyses (Figures 3 and 4) estab-
lished that the full GraphProt models (with secondary
structure information) are superior to those gained by
state-of-the-art methods. Now we assess the importance
of secondary structure in RBP binding models. The
encoding of RBP target sites is flexible, such that it is
easy to remove all structural detail to leave only sequence
information. This enables a direct comparison of the full
structure to sequence-only models in a controlled set-
ting (that is, the only difference in the comparison is the
encoding of the target site). Thus, the added value of struc-
ture information for RBP target site prediction can be
determined.
Both the CLIP-seq and RNAcompete sets (from

Figures 3 and 4, respectively) were used to compare mod-
els with and without structure information, as shown in
Figure 6 (prediction comparisons were performed analo-
gously to previous benchmarking analyses). The average
relative error reduction for structure models compared to
sequence-only models was 27% for the RNAcompete and
14% for the CLIP-seq sets. The addition of structure
improves prediction accuracy in many cases and never
leads to a significant loss in performance.
RNAcompete data are optimal for comparing models,

since the initial sequences in the library were designed to
be either unstructured or to form a stem-loop structure
consisting of a single hairpin; therefore, a clear distinc-
tion of structure contribution is possible. The results are
plotted in Figure 6A. Three of the four proteins from the
RNAcompete set showing significant improvements over
the sequence models (PTB, RBM4 and U1A) are known
to recognize stem-loop structures [51-53]. For PTB, it was
determined by ITC, gel shift assays and NMR studies that
the two RRM domains bind a stem-loop structure of U1
snRNA [51]. For RBM4, information about possible tar-
gets is scarce; however, in one case it was reported that the
target of RBM4 is a cis-regulatory element that was pre-
dicted to be a stem-loop structure [52]. This finding was
supported by several mutations that were predicted to dis-
rupt the RNA structure that led to a decreased interaction
with RBM4. U1A is also known to bind to a stem-loop
structure [53].
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Literature knowledgeProtein Source GraphProt sequence logo GraphProt structure logo

SFRS1
[40]

ELAVL1 [41]

PTB [42]

TDP43 [43]

PUM2 [6]

QKI [6]

IGF2BP1-3 [6]

AU-rich loop structureFUS [44]

large overlap of target sites 
with FUS and EWSR1

TAF15 [44]

large overlap of target sites 
with FUS and TAF15

EWSR1 [44]

uridine tractsHNRNPC [5]

U-rich region 
(3− 11 nt)

TIA1 [47]

U-rich region 
(3− 11 nt)TIAL1 [47]

Figure 5 GraphProt sequence and structure motifs capture known binding preferences.We compare data from the literature (left) with
visualized GraphProt sequence and structure motifs (right) and substantial agreement is evident, especially with known sequence specificities.
Structure motifs are annotated with the full set of structure elements: stems (S), external regions (E), hairpins (H), internal loops (I), multiloops (M)
and bulges (B). The character size correlates with the importance for RBP binding. For ELAVL1, we show the motif for ELAVL1 PAR-CLIP (C).
PAR-CLIP, photoactivatable-ribonucleoside-enhanced cross-linking and immunoprecipitation; RBP, RNA-binding protein.



Maticzka et al. Genome Biology 2014, 15:R17 Page 8 of 18
http://genomebiology.com/2014/15/1/R17

U1A

PTB

FUSIP1

RBM4

A

ZC3H7B

CAPRIN1

MOV10

Ago1-4

IGF2BP1-3

B

Figure 6 The difference in predictive power using RNA structure
in comparison to sequence-only models. Full sequence-and-
structure models (y-axis) and sequence-only (x-axis) models were
trained on RNAcompete (A) and CLIP-seq data (B). The gray
ribbons denote the standard deviation of the differences between full
structure and sequence-only models. APR, average precision; AUROC,
area under the receiver operating characteristic curve; CLIP-seq,
cross-linking and immunoprecipitation sequencing.

In contrast to RNAcompete, CLIP-seq experiments
are performed in vivo and all of the different types
of structure elements could influence binding affini-
ties. Comparisons using the CLIP-seq data are plotted
in Figure 6B. For five of the CLIP-seq sets (Ago1-4,

CAPRIN1, IGF2BP1-3,MOV10 and ZC3H7B), the perfor-
mance of the structure models was significantly improved
over the sequence models (35% average relative error
reduction). The structure motif for IGF2BP1-3 shows a
preference for the accessible part of stem-loop struc-
tures. Motifs for MOV10, CAPRIN1, ZC3H7B and Ago1-
4 indicate preferences for generally structured regions
(Figure 7). GraphProt structure models for these pro-
teins also show a higher than average relative error reduc-
tion compared to RNAcontext (53% vs 29% average
relative error reduction). This indicates that the full RNA
structure representations used by GraphProt are bet-
ter suited than the structure-profile-based approach used
by RNAcontext when modeling binding preferences of
RBPs binding to structured regions (Additional file 3).
Some of the remaining proteins show preferences for
structured binding sites in their structure motifs as well
as large relative error reductions over RNAcontext, for
example, ALKBH5, C17ORF85, C22ORF28, PTB, PUM2,
SFRS1 and TDP43. The structure properties of these

IGF2BP1-3

MOV10

CAPRIN1

ZC3H7B

AGO1-4

Protein Sequence logo Structure logo

Figure 7 Sequence and structure motifs for five CLIP-seq sets
showing significant improvement of GraphProt structure over
sequence models. In the visualized logos, the character size
determines its importance and structure elements are labeled as
follows: stems (S), external regions (E), hairpins (H), internal loops (I),
multiloops (M) and bulges (B). All motifs show preferences to both
stems and unpaired regions simultaneously. Sequence and structure
motifs for Ago1-4 and ZC3H7B are very similar. This can be attributed
to the large overlap between ZC3H7B and Ago1-4 PAR-CLIP sites
(5,752 of the 28,238 ZC3H7B sites overlap AGO1-4 sites). CLIP,
cross-linking and immunoprecipitation; PAR-CLIP,
photoactivatable-ribonucleoside-enhanced cross-linking and
immunoprecipitation.
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binding sites may be captured by GraphProt sequence
models via dinucleotide frequencies; however, we cannot
rule out other reasons for the improved performance of
GraphProt sequence models over RNAcontext.
The large-scale analysis of double-stranded RNA-

binding proteins (dsRBPs) is slightly lagging behind that
of single-stranded RNA-binding proteins (ssRBPs). To
the extent of the authors’ knowledge, the first and only
genome-wide studies of dsRBPs were performed for MLE,
MSL2 (two members of the Male-Specific Lethal com-
plex) [54] and Staufen [55]. The data from these studies,
however, is not suitable for training GraphProt mod-
els. MLE and MSL2 bind very specifically to only a few
sites in the roX1 and roX2 RNAs [54] and for Staufen,
only target mRNA was available instead of exact target
sites [55]. Therefore, we could not evaluate the perfor-
mance of GraphProt for dsRBPs binding predominantly
to stems; however, the previously mentioned improved
performance when studying RBPs binding to mixed struc-
tured and accessible regions indicate that GraphProt is
well equipped for, and should perform well when, learning
binding preferences of dsRBPs.
In summary, for ssRBPs binding to accessible regions,

GraphProt sequence models may provide results com-
parable to the full structure models at increased process-
ing speed. In contrast, the study of proteins binding to
structured regions, benefits strongly from the full struc-
ture models provided by GraphProt, with larger than
average increases in performance over structure-profile-
based models. Since full structure models never per-
formed significantly worse than sequence-only models,
they should be used as the default.

Showcase 1: GraphProt learns binding affinities without
affinity data
Biologically, it is more important to predict the binding
affinity of an interaction than to categorize a potential
target site as binding or non-binding. The bottleneck of
this computational task is the availability of large data sets
of quantitative, experimental measurements of affinities.
Although CLIP-seq experiments are becoming increas-
ingly popular, the data from them does not inherently
provide a quantification of the binding affinity. In princi-
ple, the number of reads mapping to a binding site could
be used as a proxy for its affinity, provided there is suit-
able expression data to normalize read counts. Even if
these data exist, which is often not the case, normal-
ization is non-trivial. We therefore ask whether bind-
ing affinities can be predicted while learning from only
bound vs unbound information, as can be derived from
CLIP-seq data.
To test this hypothesis, we compared experimen-

tally derived PTB-binding affinities of two sets of
sequences with GraphProt predictionmargins using the

GraphProt model for PTB HITS-CLIP. Perez and col-
leagues [42] determined relative affinities from competi-
tive titration experiments for ten sequences of 20 and 31
nucleotides. Karakasiliotis and colleagues [56] identified
three PTB consensus sequences starting at positions 112
(BS1), 121 (BS2) and 167 (BS3) of the 5′ end of the feline
calicivirus genomic RNA and created mutations designed
to disrupt PTB binding (mBS1-3) for each site. All com-
binations of the three modified sites were introduced into
probes corresponding to the first 202 nucleotides of the
genome, resulting in one wild-type and seven mutant
sequences. Affinities were measured using EMSA, so
reported affinities are relative to the wild-type probe. We
report results for the sequence-only model because the
structure model did not show a significant improvement
in cross-validation performance over the sequence-only
model. For the eight calicivirus probes, we centered on
the region containing the three consensus sequences using
the viewpoint mechanism. Prediction margins and mea-
sured affinities show significant correlation with both sets
of sequences (Perez et al.: Spearman correlation r = 0.93,
P < 0.01; Karakasiliotis et al.: Spearman correlation r =
0.76, P < 0.05). Figure 8 shows prediction margins and
reported affinities for both sets. The set of calicivirus
probes contains multiple binding sites. Thus, the mea-
sured affinities show cooperative effects between binding
sites. For example, individual mutations of the first two
binding sites (mBS1 and mBS2) slightly increase affin-
ity, but the combined mutation of both sites (mBS1+2)
leads to a decreased affinity compared to the wild-type
sequence (Figure 8B). Despite the fact that GraphProt
does not model cooperative effects, both the wild type
as well as the two probes with comparable affinities were
assigned positive GraphProt margins while the probes
with reduced PTB affinity were predicted to be negative.
The only notable outlier is mBS1+3, where GraphProt
has overestimated the combined effect of the disrupted
PTB consensus sequences.
These results clearly show that, in addition to predicting

binding affinities in a regression setting, GraphProt can
also be applied to the prediction of binding affinities when
only sets of bound sites for a binary classification task
are available, as is the case when analyzing CLIP-seq
data. This allows the evaluation of putative binding
sites with a meaningful score that reflects the biological
functionality.

Showcase 2: Differential expression upon Ago2
knockdown is explained by GraphProt predictions but
not by published CLIP-seq binding sites
A typical question in post-transcriptional gene regulation
is whether a particular observation can be explained by
RBP–RNA interactions. Here, we wanted to explain differ-
ential expression upon Ago2 knockdown in comparison
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Figure 8 The certainty of prediction correlates with measured
binding affinities. Prediction certainty is given by GraphProt
margins on the y-axis and measured affinities for two sets of PTB
aptamers on the x-axis. Fitted linear models and 95% confidence
intervals are depicted in blue and dark gray. Binding affinities are
given by (A) relative association constants from [42] and (B) affinities
relative to the wild-type (wt) probe from [56]. wt, wild type.

to the wild type. Ideally, to obtain RBP target informa-
tion, a CLIP-seq experiment should be performed for
the cell and condition being analyzed, although this is not
always feasible. A more economic approach would be to
use RBP targets taken from publicly available CLIP-seq
data. The problem is that the available data are mostly
generated by experiments for other cells or conditions.
We showed that publicly available CLIP-seq data do not

explain the observed effect, most likely due to differential
expression between the two experimental conditions. In
contrast, we achieved highly significant agreement when
we use GraphProt to detect binding sites missed by a
CLIP-seq experiment (Figure 9).
In detail, two independent factors influence the effi-

ciency of downregulating a target mRNA. First, the
binding affinity of an RBP to its target site regulates
the binding frequency and strength. Second, the num-
ber of proteins bound to the same target can increase
the signal for subsequent steps in the regulation process
[57]. The effect of cooperative regulation when the same
element binds multiple times has been especially well
studied for Ago2–microRNA interactions [58-61]. Here,
Ago2 generally associates with a microRNA and other
proteins (together a miRNA-induced silencing complex
(miRISC)) to target mRNAs for degradation and/or trans-
lational inhibition. A common observation is that several
miRISC complexes bind to the same mRNA and the
cooperative effect is that the downregulation is stronger
[59,61].
In previous work, Schmitter and colleagues established

that the mean number of microRNA seed sites per 3′ UTR
increased significantly between unchanged and weakly
upregulated as well as strongly upregulated mRNAs in
human HEK293 cells upon Ago2 knockdown [58]. Using
their expression data and the same fold-change categories,
we investigated the influence of both affinity and coop-
erative effects based on GraphProt predictions of Ago2
binding sites in comparison to the available CLIP-seq
data. The GraphProt sequence-only model was trained
on the Ago2-HITS-CLIP set (the use of structure did not
improve prediction results for Ago2) and was applied to 3′
UTRs with measured fold changes to predict high-scoring
target sites.
In showcase 1 (Figure 8), we established that Graph

Prot prediction margins correlate with measured affini-
ties. Therefore, we estimated high-affinity Ago2 binding
sites by only considering the highest-scoring predictions.
We compared these predictions to reliable binding sites
derived by peak calling on the Ago2-HITS-CLIP read pro-
files. The overall regulatory effect was investigated by
comparing the fraction of 3′ UTRs that contain bind-
ing sites between the fold-change categories (Figure 9A).
An interaction with higher affinity should cause a greater
upregulation upon Ago2 knockdown. In a second anal-
ysis, cooperative effects were estimated by counting the
number of Ago2 binding sites per 3′ UTR (Figure 9B)
in each fold-change category. For binding sites predicted
by GraphProt, both the fraction of 3′ UTRs with at
least one GraphProt hit (Figure 9A) and the number of
GraphProt hits per 3′ UTR (Figure 9B) showed a signifi-
cant increase between unchanged and weakly upregulated
transcripts. While there was no major difference in the



Maticzka et al. Genome Biology 2014, 15:R17 Page 11 of 18
http://genomebiology.com/2014/15/1/R17

A

B

down-regulated
unchanged

weakly up-regulated
strongly up-regulated

*

*
*

*

*

Figure 9 Targets predicted by the Ago2-HITS-CLIP model
are in agreement with measured fold changes after Ago2
knockdown. Analysis of predicted Ago2 binding events to
3′ UTRs that are upregulated after Ago2 knockdown at day 2 for
transcripts falling into the following fold-change categories:
downregulated (fold change below 0.7, 804 UTRs), unchanged
(fold change between 0.7 and 1.4, 6,893 UTRs), weakly upregulated
(fold change between 1.4 and 2.0, 713 UTRs) and strongly
upregulated (fold change greater than 2.0, 136 UTRs). (A) Fraction
of 3′ UTRs with at least one Ago2 binding site hit. Asterisks
indicate a statistically significant increase (t-test: * P < 0.05;
** P < 0.001). (B) Number of binding site hits per 3′ UTR. Asterisks
indicate a statistically significant increase (Wilcoxon rank sum
test: * P < 0.05; ** P < 0.001). Box plots do not include outliers,
for that reason we show the full distributions in Additional
file 4. HITS-CLIP, high-throughput sequencing of RNA
isolated by cross-linking immunoprecipitation; UTR, untranslated
region.

fraction of UTRs containing UTRs with at least one hit,
we saw a clear enrichment for the number of hits in UTRs
that are highly regulated, indicating the cooperative effect
of multiple miRISC target sites (Figure 9B). In contrast, no
correlation was observed for binding sites taken from the
Ago2-HITS-CLIP set in both cases (Figure 9).
Since microRNAs guide Ago2 binding, we also looked at

computational approaches for detecting microRNA bind-
ing sites. To this end, we repeated the analysis from
[58] using the same microRNA seeds found to be over-
represented in upregulated transcripts and extracted Pic-
Tar 2.0 microRNA target predictions from doRiNA [38]
to compare against GraphProt (Additional file 4). Both
microRNAdetection approaches showed some agreement
within the differential expression upon Ago2 knockdown;
however, the differences between fold-change categories
are not as significant in comparison to GraphProt.
These results prove the necessity of computational target
prediction in addition to performing CLIP-seq experi-
ments. We proved the capacity of GraphProt to predict
RBP target sites reliably and even to detect sites missed by
experimental high-throughput methods.

Conclusions
GraphProt is an accurate method for elucidating bind-
ing preferences of RBPs and it is highly flexible in its
range of application. We used a novel and intuitive rep-
resentation of RBP binding sites that, in combination
with an efficient graph kernel, is able to capture bind-
ing preferences of a wide range of RBPs. Depending on
the input data, GraphProt models can solve either a
regression or a classification task and are thus suitable
for learning binding preferences from the two current
major sources of experimental data: RNAcompete and
CLIP-seq. Trained models are used to predict func-
tional RBP target sites on any transcript from the same
organism.
GraphProt had a robust and much improved per-

formance in comparison to the existing state of the
art. The full RNA structure representations used by
GraphProt were shown to be especially suitable for
modeling preferences for binding sites within base-pairing
regions. For RBPs known not to be influenced by RNA
structure, GraphProt provides very fast sequence-only
models that perform as well as the full structure mod-
els. RBP sequence and structure preferences learned
by GraphProt can be visualized using well-known
sequence logos. Beyond the mere elucidation of binding
preferences, GraphProt models have been successfully
used for diverse tasks such as predicting RBP affinities and
scanning for RBP target sites. GraphProt is applicable
on a genome-wide scale and can thus overcome the lim-
itations of CLIP-seq experiments, which are time and
tissue dependent. We showed that when GraphProt is
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applied to all transcripts, missing targets are identified in a
setting different to the one where the original CLIP-seq
experiment was performed.

Materials andmethods
Graph encoding of RNA sequence and structure
We have proposed an easy-to-adapt method to encode
information about RNA sequence and structure in a nat-
ural way. The key idea is to use a generic hypergraph
formalism to annotate different types of relations: (1) rela-
tions between nucleotides, such as sequence backbone or
structure base pairs and (2) relations between abstract
structure annotations, such as loops or stems, and the
corresponding subsequences.
In this paper, we started from the representation used in

GraphClust [62], and provide several useful extensions.
In GraphClust, an RNA sequence is encoded, together
with its folding structure, as a graph, where vertices are
nucleotides and edges represent either a sequence back-
bone connection or a bond between base pairs. We do
not require a single best-folding structure (for example,
the one achieving minimum free energy) because this is
known to be error prone. Instead, we sample the popu-
lation of all possible structures and retain highly proba-
ble, representative candidates. The sampling strategy was
implemented via the shape abstraction technique intro-
duced by RNAshapes [63]. RNAshapes categorizes all
secondary structures according to a simplified represen-
tation, called the shape, which abstracts certain structural
details. Different abstraction levels, which ignore various
structure details, are possible, for example, ignoring all
bulges, or all bulges and all internal loops. Stem lengths
are always ignored. Out of all possible structures that
have identical shapes, RNAshapes considers the one with
minimum free energy as representative and calls it the
shrep. We calculated shreps using shifting windows of 150
nucleotides with a step size of 37 nucleotides and pre-
dicted up to three shreps that are required to be within
10% of the minimum free energy of the sequence for each
window.
In this work, we extended the representation used in

GraphClust [62] in three ways: (1) we added a layer of
abstract structure information to the secondary struc-
ture representation (see Figure 2B); (2) we considered
an oriented version of the graphs and (3) we imposed a
restriction on the graph, termed the viewpoint, so that fea-
tures are only extracted from the informative part, that is,
the part where RBP binding is hypothesized to occur (see
Figure 2A).

Encoding abstract structure information
To model the high-level characteristics of an RNA struc-
ture better and to increase the capacity of the model
to detect distantly related sequences, we considered

an additional layer of secondary structure annotations
that we call abstract. This layer generalizes the spe-
cific nucleotide information and characterizes only the
generic shape of a substructure (analogous to the shape
abstraction in RNAshapes [63]) such as stems (S), mul-
tiloops (M), hairpins (H), internal loops (I), bulges (B)
and external regions (E) (see the right-hand side of
Figure 2B). This type of annotation is much richer than
what could be achieved by merely labeling the corre-
sponding nucleotides (for example, a nucleotide C within
a stem could be labeled as C-S and within a bulge loop as
C-B) and dependencies can be extracted at a pure abstract
level (that is, between abstract secondary structure ele-
ments) and at a hybrid level (that is, between abstract
secondary structure elements and specific nucleotides).
To represent such a rich annotation scheme, we required
the expressive power of hypergraphs, which generalize
the notion of an edge to that of a relation between many
vertices (see Figures 2 and 10).

Sequence-only encoding
It is possible to use GraphProt in pure sequence mode,
which ignores the RNA secondary structure by discarding
base-pairing edges and abstract RNA structures. In this
case, GraphProt behaves like an efficient, string kernel
machine with gaps in the spirit of [64].

Graph kernel
The graph kernel used by GraphProt is the Neigh-
borhood Subgraph Pairwise Distance kernel (NSPD
Kernel) [65]. In this approach a graph is decomposed
into a set of small overlapping subgraphs (see Figure 2C).
Every subgraph is then assigned a numerical identifier
using an efficient hash-based technique. The identifier is
used to solve the isomorphism detection problem in an
approximate but extremely fast way and it is used to build
the final explicit feature encoding. In this way we build
representations that can effectively use millions of fea-
tures. The type of subgraph chosen in NSPD Kernel
is the conjunction of two neighborhood subgraphs at a
small distance from each other. Two parameters deter-
mine the characteristics of these subgraphs (and are thus
related to the complexity and size of the entire feature
set): (1) the maximum size of the neighborhood, called
the radius R, and (2) the maximum distance between
any two root nodes, called the distance D. Features
are extracted for all combinations of values r ≤ R and
d ≤ D.
In this work, the NSPD Kernel was extended in the

following way: (1) we upgraded the encoding from graphs
to hypergraphs to annotate the RNA abstract structure
elements, (2) we considered directed graphs rather than
undirected graphs and (3) we introduced a way to select
subsets of features using the viewpoint.
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Figure 10 Extensions to the graph kernel for GraphProt. (A) Transformation of a hypergraph to an equivalent incident graph. (B)Mixed
abstract–ground level hypergraph features. Two identical occurrences of the subsequence UUC yield two independent features, one that is aware
of the internal loop location and the other that is aware of the hairpin loop location. (C) Undirected to directed graph transformation: edges are
directed following the 5′ to 3′ direction. An additional copy of the graph with inverted edges and relabeled vertices (using the prefix r) is added. (1) A
fragment C(G-C)U is highlighted. In the undirected case, the reversed substructure U(G-C)C generates identical features. (2) The directed treatment
creates features that can be used to discriminate between the two fragments. The neighborhood of vertex G generates the feature (G-C)U in the
main direction and (rG − rC)rU in the reverse direction. (D) Viewpoint extension: a large window allows the RNA molecule to fold correctly;
however, as we are interested in a local phenomenon, we restrict the extraction of features to a smaller subportion that reflects the relevant part of
the RNA, that is the RBP binding site. We highlighted the viewpoint area in yellow. We highlighted in red the portion of the folded RNA molecule
that will be accessed to extract features when the parameters for the NSPD Kernel are radius + distance = 5. RBP, RNA-binding protein.

A kernel for hypergraphs
In the NSPD Kernel of [65], shortest paths can access
all vertices and edges in the graph. When the graph con-
tains vertices with a large degree (that is, it is not sparse),
however, the shortest path distance becomes degenerate
and many vertices are immediate neighbors of each other.
Under these conditions, the NSPD Kernel would gen-
erate uninformative features corresponding to extremely
large subgraphs that are unlikely to occur in more than
one instance. Thus, effective learning or generalization
would be impossible. This situation would occur if we
used the incident graph representation for hypergraphs as
shown in Figure 10A (left). Hyperedges (that is, relations)
would yield vertices with a large degree. For example, a
hairpin loop relation would produce a vertex connected
to all nucleotides belonging to the respective hairpin loop.
This would effectively remove the nucleotide order of the
RNA sequence, since there would exist a shortest path of
length two between any two nucleotides in the original
hairpin sequence. To deal with this issue, we extended the
NSPD Kernel to work on the incident graph as visual-
ized in Figure 10 by (1) considering the relation vertices as
non-traversable by paths and (2) creating additional fea-
tures (that is, pairs of subgraph decompositions), where
the root vertices of the two paired neighborhoods are on
the two end points of the hyperedge relation (Figure 10B).
In intuitive terms, this yields features that are aware of the

nucleotide composition of a substructure and, at the same
time, of the position of that substructure in the global
abstract structure annotation. Consider Figure 10B.With-
out the abstract structure annotation, the two occurrences
of the subsequence UUCwould be indistinguishable.With
the abstract annotation, we generate two independent fea-
tures, one that is aware that UUC is located in an internal
loop (the vertex labeled I surrounded by two stems), and
another feature that is aware that UUC is located in a
hairpin loop (the vertex labeled H, preceded by a stem).
By making the relation vertex non-traversable, we have

separated the basic from the abstract part of the graph.
The NSPD Kernel features in this case can be divided
into three separate sets: one set for the basic part, which
corresponds to the features used in GraphClust [62],
a set of novel features for the abstract part and finally
a hybrid set of features that relate the nucleotide com-
position to the abstract part. Note that the features for
the abstract part are independent of the exact nucleotide
composition of the underlying substructures and there-
fore allow a better generalization for distantly related RNA
sequences.

Directed graphs
Using undirected graphs for RNA sequences (as in
GraphClust [62]) means that the order imposed by the
5′ → 3′ asymmetry is lost. Hence, a sequence and its



Maticzka et al. Genome Biology 2014, 15:R17 Page 14 of 18
http://genomebiology.com/2014/15/1/R17

reversed counterpart (not the complement) would yield
the same feature representation. To overcome this limita-
tion, we extended the NSPD Kernel [65] to use directed
graphs. For this, we required an unambiguous definition
of edge direction: (1) the sequence backbone edges reflect
the natural 5′ → 3′ direction, (2) the base-pair edges are
directed away from the nucleotide closer to the 5′ end and
towards the nucleotide closer to the 3′ end and (3) edges in
the abstract part are directed by starting at the sequence
ends and traveling from the inner annotations towards the
outer limbs, that is, starting frommultiloops and ending at
hairpin loops. Finally, to capture all relevant information,
while still maintaining the consistency with the chosen
direction, we duplicated the graph, relabeled all vertices by
adding a distinguishing prefix, and reversed the direction
of all edges (see Figure 10C).

Selection of kernel viewpoints
In the NSPD Kernel [65] of GraphClust [62], all ver-
tices are considered in the generation of features. This
is suitable when global RNA sequences are being com-
pared. For RBP binding sites on mRNA, however, only the
local target region could be informative and considering
all vertices would lead to a substantial amount of noise and
decrease the overall predictive performance. Thus, with-
out losing discriminative power, we reduced the number
of vertices considered to a fixed subregion of the sequence
called the viewpoint (see Figures 2 and 10). In a supervised
setting, the viewpoint area is selected randomly for nega-
tive examples and, for the positive examples, around the
region covered by the RBP-bound sequence identified by
the respective high-throughput experimental technique.
In a genome-wide scanning setting, it would be selected
with amoving window approach. Note that we cannot sim-
ply reduce the graph encoding to fit exactly this reduced
area, since in so doing, we would lose the information
needed to estimate the folding structure of the mRNA.
We require that the root vertex of at least one of the two
neighborhoods is localized in the viewpoint area. This way
we still allow accurate folding of the mRNA, by consid-
ering 150 nucleotides upstream and downstream of the
viewpoint [34], but we only select features that are local
to the area of interest. The other hyper-parameters of the
NSPD Kernel, namely the distance D and the radius
R, determine the area of influence around the putative
target region, that is, the portion of the mRNA used to
extract relevant information for the discriminative task
(see Figure 10D). The viewpoint technique was first intro-
duced in [66].

Preparation of training and test data
Binding sites for PTB-CLIP [39] were taken from
[GEO:GSE19323] (downloaded from the Gene Expres-
sion Omnibus [67]). Sites for all other proteins were

downloaded from doRiNA [38] (Additional file 1). Bind-
ing sites of more than 75 nucleotides were excluded
from all training sets. iCLIP sites were extended by 15
nucleotides upstream and downstream. For each set of
CLIP-seq sites, we created a set of unbound sites by
shuffling the coordinates of bound sites within all genes
occupied by at least one binding site, thus enabling the
training of models using a binary classification.
To enable accurate prediction of secondary structures

[34], we extended the binding sites in both directions by
150 nucleotides or until reaching a transcript end. Core
binding-site nucleotides, but not the additional context for
folding, were marked as viewpoints. All expansions were
done using genomic coordinates.
Secondary structure profiles for RNAcontext were

calculated using a modified version of RNAplfold [33]
that calculates separate probabilities for stacking base
pairs (that is stems), external regions, hairpins, bulges,
multiloops and internal loops. Profiles for RNAcontext
were calculated using the full sequences. Training and
testing were performed on the same core binding sites that
were marked as viewpoints for GraphProt. This ensures
that RNAcontext still has access to the full sequence
context required for structure prediction while providing
the same concise binding sites as used by GraphProt.
MatrixREDUCE was also evaluated using only the view-
points.
Next 3′ UTRs for Ago2 binding-site predictions were

prepared by selecting a non-overlapping set of transcripts
with associated fold changes for Ago2 knockdown on day
2, preferring longer over shorter UTRs and with at least
100 but no more than 3,000 nucleotides.

Benchmarking GraphProtmodels
The predictive performance of GraphProt models
trained on CLIP-seq data was evaluated by a tenfold
cross-validation. Classification performance is given as
the AUROC using the SVM margins as the diagnostic
results of classification. GraphProt has three main
components: the graph encoding part, the graph kernel
feature part and the predictive model part. These are
parametrized. The main parameter in the graph encod-
ing part is the abstraction level of the shape category.
In the graph kernel feature part, the main parameters
are the maximal radius R and the maximal distance
D, which define the neighborhood subgraph features.
In the predictive model part during classification, the
SVM models were trained using a stochastic gradient
descent approach [68] and the main parameters are the
number of training epochs and parameter λ, which con-
trol the trade-off between the fitting accuracy and the
regularization strength (Additional files 5 and 6). For the
RNAcompete regressions, the main parameters are c and
ε, which control the trade-off between the fitting accuracy
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and the regularization strength (Additional file 7). The
optimal values for all these parameters were determined
jointly via a line search strategy. All of the parame-
ters were kept fixed except one, which was chosen for
optimization in a round-robin fashion.
Given the amount of computation required for the opti-

mization phase, all GraphProt parameters and RNA-
context motif widths were evaluated on a set of 1,000
sequences or 10% of the available data, whichever was
smaller (Additional files 5, 6 and 8). The sequences used
to determine the optimal parameter values were then
discarded for the cross-validated performance assess-
ment procedure. MatrixREDUCE automatically selects
appropriate motif widths during training. For each fold
of the MatrixREDUCE cross-validation, we evaluated a
single motif, setting max_motif to 1 (Additional file 9).
RNAcontext and MatrixREDUCE were trained using
values 1/-1 for positive/negative class sequences and using
motif widths ranging from 4 to 12 nucleotides.
Model evaluation for the RNAcompete data was

essentially as published for RNAcontext [17]. Mod-
els were evaluated through converting them to binary-
classification tasks using the published thresholds. Classi-
fication performance is given as the APR, which is better
suited than AUROC for unbalanced classes (which have
few bound sequences and many unbound sequences). For
each of the nine proteins, models were created for the
two independent sets and in each case tested on the cor-
responding sets. We report the mean score of the two
evaluations. GraphProt parameters were determined
using subsets of 5,000 training sequences (Additional
file 7). Support vector regressions were performed using
libSVM [69]. RNAcontext motif widths were deter-
mined using all training sequences (Additional file 8).
We report the improvement in predictive performance

as the relative error reduction, defined as (x′ − x)/(1 − x)
where x is the baseline performance and x′ is the
improved performance. The performance is a function
with codomain in the interval [0, 1] and is 1 when the
prediction corresponds exactly to the desired target. The
(generalized) error is consequently defined as e = 1 − x.

Predicting RNA-binding protein binding sites
A trained GraphProt model is applied to any transcript
(or 3′ UTRs) to predict (novel) binding sites from the
same organism (across-species compatibility may exist,
but was not tested). Two options for prediction are avail-
able. First, an entire sequence window, representing a
potential binding site, is assigned a score that reflects the
likelihood of binding. The score is the prediction margin
as given by the machine-learning software, for example,
the SVM. Positive values indicate a true binding site and
negative values indicate that no binding occurs. Second,
to generate prediction profiles on a nucleotide level, we

process the prediction margins reported by the software
per feature (that is, the importance of that feature for
predicting RBP binding), not per window. Profiles are cal-
culated per nucleotide by summing over all features for
which the corresponding nucleotide is a root (central)
node (in the feature, that is subgraph, Figure 2C). High-
affinity binding sites can be extracted from prediction
profiles as we exemplified for Ago2.

Prediction of Ago2 target sites
To predict Ago2 target sites, we calculated binding pro-
files for the 3′ UTRs of genes with corresponding fold
changes from the Ago2 knockdown experiment in [58]
using the GraphProt sequence-only model, trained on
the Ago2 HITS-CLIP set. Since proteins do not only bind
to single nucleotides, binding scores were averaged for
all 12-mer windows. To gain high-affinity Ago2 binding
sites we considered the 1% highest-scoring 12-mers and
merged overlapping and abutting sites.

Logos of sequence and structure binding preferences
To provide visual representations for both sequence and
structural preferences encoded by the GraphProt mod-
els, we predicted and scored the approximately 25,000
folding hypotheses of up to 2,000 CLIP-seq-derived
binding sites. For each folding hypothesis per binding site,
we extracted only the highest-scoring 12-mer, where the
score is the average predictionmargin per nucleotide from
the binding profile, analogous to the method of predicting
the Ago2 binding sites. To visualize structure preferences,
we compressed full secondary structure information into
structure profiles. A nucleotide is assigned to the structure
element it occurs in: stem (S), external region (E), hair-
pin (H), internal loop (I), multiloop (M) or bulge (B). The
1,000 highest-scoring 12-mer nucleotide sequences and
structure profiles were converted into sequence and struc-
ture logos, respectively (using WebLogo [70]; all logos are
in Additional file 10).

Availability
The GraphProt software, models, parameters and
sequences (CLIP-seq sequences used for training, and
PTB and 3′ UTR sequences used for predictions) are
available for download [71]. GraphProt is included as
Additional file 11 for archival purposes.

Additional files

Additional file 1: Source publications of CLIP-seq sets (PDF).

Additional file 2: CLIP cross-validation and RNAcompete validation
results (PDF). The file contains results of the CLIP cross-validations and
RNAcompete evaluations (AUROC and APR), estimated predictive
performance using tenfold cross-validation, receiver operating
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characteristic curves for the CLIP cross-validations and precision-recall
curves for the RNAcompete evaluations.

Additional file 3: Binding to double-stranded regions (PDF). Binding
to double-stranded regions depends on distant stretches of nucleotides
involved in the base pairing.

Additional file 4: Additional analyses for Ago2 binding sites (PDF).
Full distributions of Ago2 binding site hits corresponding to Figure 9B and
additional analyses on microRNA target prediction corresponding to
Figure 9A,B.

Additional file 5: Parameters fitted for GraphProt CLIP-seq sequence
models (CSV).

Additional file 6: Parameters fitted for GraphProt CLIP-seq structure
models (CSV).

Additional file 7: Parameters fitted for GraphProt RNAcompete
models (CSV).

Additional file 8: Motif lengths chosen for RNAcontext models (CSV).

Additional file 9: Motif lengths chosen for MatrixREDUCEmodels
(CSV).

Additional file 10: GraphProt motifs for CLIP-seq models (PDF).
GraphProt structure motifs including simplified profiles distinguishing
only paired and unpaired positions.

Additional file 11: GraphProt version 1.0.1 (ZIP).
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