
Introduction
Owing to their sessile mode of life, plants are subject to 
drastic variations in their environment that lead to rapid 
adaptation of their gene expression states resulting from 
their complex gene-regulatory networks. Th e ultimate 
goal in plant systems biology is to infer, for both scientifi c 
and practical gain, how such regulatory networks will 
respond under untested conditions. In prokaryotes, 
models to infer gene-regulatory networks (GRNs) have 
successfully predicted genome-wide variations in un-
tested environmental conditions, as well as the causal 
relationships between genes [1-4]. However, there has 
been less success in generating predictive network 
models for multicellular organisms, including plants. 
With the increasing availability of high-throughput 
‘-omic’ techniques and data, we think it useful to 
summarize both experimental and informatic approaches 
for inferring causal relationships in GRNs. Here, we use 
the term GRN to refer to the set of transcriptional inter-
actions between transcription factors (TFs) and their 
targets, as opposed to a multimodal set of gene-to-gene 
or gene-to-metabolite interactions.

Here, we have three aims: fi rst, to summarize eff orts to 
use time-series and other -omic data to infer causal 

regulatory edges, showing the kinds of biological insights 
that can be obtained; next to provide a description and a 
categorization of the informatic methods that are being 
used to infer causal networks; and fi nally to discuss 
recent high-throughput experimental techniques to 
validate inferred GRNs in plants.

Successful case studies of learning gene-regulatory 
networks in plants
Diff erent kinds of systems approaches are used to model 
GRNs in plants. One way of characterizing these systems 
approaches is dependent on whether or not they start 
with a signifi cant amount of prior experimental know-
ledge of the connectivity of the modeled GRN. Th us, in 
this article, we call them ‘Strong Prior’ and ‘Weak Prior’ 
approaches, respectively.

Strong Prior approaches
In our terminology, Strong Prior approaches are grounded 
in extensive previous knowledge about the components 
involved in the GRNs [5] of well-studied functions - for 
example, auxin signaling [6-8], the circadian clock [9-11] 
or fl ower development [12-14]. Th is previous knowledge 
is paradigmatically derived using diff erential-equation 
systems and Boolean models (described below). Outputs 
of the models are then compared with experimental data 
to determine their predictive power. When the predic-
tions hold, the models can be used to explore GRN 
behavior in untested conditions in silico and to determine 
the overall system properties and architecture. Th ese 
kinds of investigations have led to some striking results, 
as discussed below.

For auxin signaling, Vernoux and colleagues [6] built a 
model based on previous knowledge of the auxin/indole-
3-acetic acid and auxin response factor (AUX/IAA-ARF) 
transcription factor network and yeast two-hybrid experi-
ments (taking into account the possibility of interactions 
between the protein partners). Th is ordinary diff erential 
equation model demonstrated that the resulting GRN 
shows a strong buff ering capacity as the transcriptional 
induction of auxin-induced genes is stabilized even when 
auxin inputs display strong variations. Th is property was 
experimentally revealed in planta, in the shoot apical 
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meristem, by using the fluorescent sensor DII-VENUS as 
a reporter of the input of the signaling pathway and the 
DR5 reporter gene as the output.

The circadian clock is also a well-studied gene-regu-
latory system (for a comprehensive review, see Bujdoso 
and Davis [15]) that consists of interlocked trans cription 
factor feedback loops [16-18]. GRN modeling of the 
circadian system has been successful in determining its 
evolution in time and the crucial components involved in 
some key features of the oscillations. For instance, in 
studies by Pokhilko and colleagues [17], the GRN model 
was central to the discovery of the role of PRR5 as a night 
inhibitor of the expression of LHY/CCA1, including the 
role for PRR5 in the control of the phase of morning gene 
expression. In the same work, this GRN-generated 
hypothesis was validated by matching the behavior of 
prr5 mutants to gene expression predicted by the model 
[17]. In an alternative approach, Akman et al. [10] used 
Boolean logic to describe circadian circuits in a quanti-
tative model. The simplified model with decreased 
parameterization was able to simulate observed circadian 
oscillations accurately and identify regulatory structures 
consistent with experimental data.

Flower development (described by the ABC model) is a 
textbook example of a conserved GRN that controls the 
fate of cells becoming sepals, petals, stamens and carpels 
[19]. A successful approach using a discrete-network 
model (gene expression is coded into discrete values) has 
been to simulate the cell-fate determination during 
forma tion of floral organ primordia in Arabidopsis [12]. 
This particular GRN dynamically converges towards 
different steady-states in gene expression, each of which 
defines the different cell fates in flower organs. Plants 
arrive at these cell-fate-associated steady-states (or ‘basins 
of attraction’) independently of the initial gene expression 
values. This shows that this GRN has feedback/buffering 
capacities that direct gene expression behavior towards a 
dedicated state (for example, making a particular organ) 
[12]. More recent studies have taken advantage of the 
wealth of interaction and expression data available in 
public databases to construct extensive [13] and con-
densed [14] models of GRNs involved in floral develop-
ment, resulting in time-evolving molecular regulatory 
networks for the development of sepal primordia [13] as 
well as for floral transition [14].

These few examples of successful Strong Prior 
approaches demonstrate that GRNs confer robust emer-
gent proper ties supporting developmental or environ-
mental adaptations.

Weak Prior approaches
The Strong Prior approaches described above begin with 
some physical connection data and then use time-series 
and other experiments to model behavior [5]. However, 

for many systems - in plants, animals and microbes - this 
initial knowledge has yet to be unearthed.

Weak Prior approaches infer potential connections in 
GRNs from -omic datasets. Many techniques are used to 
infer unknown networks in the field of systems biology 
(for reviews, see [1,20,21]). These techniques have 
enjoyed great success in simpler systems, such as for 
bacteria. For instance, a striking success story is the 
model of gene-regulatory programs built from a multi-
level dataset (including transcriptomic data and cis-regu-
latory element (CRE) inference) to describe the response 
of Halobacterium salinarum to environmental cues [2]. 
The model was built de novo by a machine-learning 
procedure based on 72 transcription factors responding 
to 9 environmental factors. The same model was able to 
predict the correct gene response (80% of the genome) in 
147 untested conditions [2]. This study clearly demon-
strates the feasibility of Weak Prior approaches in pro-
karyotic systems. In plant science, as this eukaryotic 
system is far more complex than that of yeast or bacteria, 
the field of GRN de novo learning is far less advanced 
[22]. However, Weak Prior approaches have been 
developed with some success, as described below.

In the plant field of GRN modeling, the three most 
popular top-down approaches are: (i)  classical correla-
tions networks (in combination with other information 
to establish causality), (ii)  graphical Gaussian models 
(based on partial correlation) and (iii) machine-learning 
modeling, or combinations of the above.

Correlation networks have been used extensively to 
study GRNs in plants even if, by themselves, they do not 
directly determine causality in networks [23]. When 
combined with other experimental information, corre la-
tion networks help to identify key features of plant regu-
latory networks. For example, an Arabidopsis multi-
network was constructed from all available information 
about putative TF-to-CRE interactions, protein-protein 
interactions and microRNA-mRNA interactions [24]. 
Correlation data integrated with the Arabidopsis multi-
network have uncovered biomodules involved in carbon/
nitrogen signal integration [25] and have also revealed a 
central role for CCA1, the central component of the 
circadian clock in nutrient control [26]. Additionally, 
correlation network approaches were strikingly success-
ful in identifying two genes (encoding a myo-inositol-1-
phosphate synthase and a Kelch-domain protein) corre-
lating with biomass accumulation in plants [27]. The 
individual role of these two genes was further supported 
by an association-mapping study that demonstrated 
coherent allelic diversity at their loci [27].

Graphical Gaussian models can be viewed as an 
approximate method to find partial correlation networks. 
Partial correlation is a measure of correlation between 
pairs while controlling for other factors. Mathematically, 
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if A, B and C correlate together, partial correlation corre-
lates A and B by ‘subtracting’ the correlation due to A 
and C. Practically, partial correlation is the correlation 
between the residuals resulting from the linear regression 
of A with C, and of B with C. Graphical Gaussian models 
have been successfully developed [28] and applied to 
plant GRNs [29,30]. Ingkasuwan and colleagues analyzed 
a time-series to identify genes regulated across the 
diurnal cycle [29]. Then a sub-network of starch-metabo-
lism genes together with the diurnally regulated TFs were 
modeled using graphical Gaussian models. This model 
was tested and validated by studying regulator mutants 
that displayed starch granule defects in plastids [29].

Machine-learning methods have also been employed to 
learn GRNs from time-series and other data. State-space 
modeling is a modern machine-learning technique 
devoted to detecting causality in networks by inferring 
ordinary differential equations specifying the relation-
ships among genes in those networks while avoiding 
over-fitting. In plants, this technique has been applied to 
probe GRNs involved in leaf senescence [31] and GRNs 
involved in regulating early, time-dependent transcrip-
tional responses to NO3

- [32]. Breeze and colleagues [31] 
provided a high-resolution temporal picture of the trans-
criptome of the aging leaf. Machine learning revealed 
modules that play various roles at different times, where 
each module involves particular TF families and CREs. 
This approach resulted in a GRN model that correctly 
predicted the influence of the TF ANAC092 and pro-
posed several new regulatory edges between genes 
(repre senting causal relationships) that remain to be 
validated [31]. In another study [32], state-space model-
ing and machine learning were applied to an Arabidopsis 
high-resolution time-course of genome-wide transcrip-
tional response to treatments with NO3

-. A subset of TFs 
and nitrogen transport and assimilation genes has been 
modeled in order to propose a GRN that explains NO3

- 
signal propagation. The model has been tested in silico as 
well as experimentally. In silico validation demonstrated 
that the model trained on the early time points of the 
time-series experiment is able to predict modulation of 
gene expression at later time-points (not used to train the 
model). Experimental validation consisted of studying 
the effect of overexpressing a predicted hub (SPL9 TF) on 
the NO3

- response of other NO3
--regulated genes. Indeed, 

SPL9 overexpression modified the regulation of the 
nitrate assimilation gene NIA2 but also of many genes 
encoding NO3

--regulated TFs [32].

Analytical approaches used to infer causality in the 
gene-regulatory network (a mathematical point of 
view)
Inferring a causal edge between objects is useful in many 
applications in plant biology, from genomics to ecology. 

If some population of objects A can cause an increase in 
the population of object B (where A could be a gene in 
our context, a hormone or a species in ecology), then 
lower ing the population of B can be achieved by: 
(i)  remov ing some members of B, (ii)  removing some 
members of A or (iii) interfering with the edge from A to 
B. Conversely, making B achieve a higher population can 
be achieved by: (i) adding more members of B, (ii) adding 
more members of A or (iii) enhancing the efficiency of 
the edge from A to B. Commonly, causal relationships in 
biology can involve several elements, for example A1 to 
A5, influencing some B, sometimes positively and 
sometimes negatively. The influences can be ‘linear’, in 
which case each element has either a positive or negative 
weight (or coefficient), or ‘non-linear’, in which case the 
elements work synergistically. An example of synergy 
would be a dependency of B on the product of the 
concentrations of some genes X and Y.

Generally, simpler models scale to larger numbers of 
genes, but are less informative, as summarized by the 
classes of network-inference methods listed in Table  1. 
Virtually all approaches deteriorate as the size of net-
works becomes larger, some more than others. Fortu-
nately, biology tends to be modular, so large analyses can 
be broken down into smaller ones and then recombined 
[5].

The approaches to network inference fall into the 
following categories, which can be classified based on 
level of information richness (low, medium and high) and 
scalability of the derived network (large, medium and 
small networks), as shown in Table 1. High information 
richness would, for example, allow the inference of the 
dynamic behavior of a network [21], whereas low infor-
mation richness would give some approximation to the 
connectivity of a causal GRN.

Correlation techniques are techniques that try to find 
single source-target relationships. To try to isolate the 
possibly mutual influence of one gene on another, many 
researchers make use of partial correlations. Schaefer and 
Strimmer [33] and Ingkasuwan et al. [29] have presented 
an analysis of graphical Gaussian models. These models 
assume a Gaussian noise distribution and try to infer 
partial correlations (gene X influences gene Y, while hold-
ing the effects of other genes constant). Partial correla-
tions can be computed indirectly by calculating regres-
sions and correlations among the residuals. Such analyses 
require heuristic approximations for large networks 
because the number of experiments (for example, micro-
arrays) is always far fewer than the number of genes. 
Thus, partial-correlation approaches can result in medium-
sized networks (up to 100 genes) (Table 1).Like correla-
tion, ‘mutual information’ [28] seeks pairwise relation-
ships among variables without assumptions of linear or 
rank dependencies. Also, like correlation, mutual 
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information can be used for large-scale networks and 
does not try to compute the weight of influence of one 
gene on another in predicting the expression value of the 
target.

Use of differential equations, often based on mass 
action, yields equations of the form: Rate of change in 
gene A concentration = Synthesis rate - Decay rate. Such 
approaches work especially well for small, information-
rich networks such as the auxin networks mentioned 
above [5,34]. An issue with the mass-action approach is 
that it assumes that different inputs interact in a multi-
plicative manner (product of concentration of each 
component), whereas the interaction is likely to be more 
complex in biological, as opposed to chemical, settings.

An alternative approach to network inference is to use 
a Boolean approach, which allows other logical relation-
ships among regulators and their targets [5,10,12]. Logic 
gates are based on thresholds  - for example, an ‘AND 
gate’ will have an effect on target if the minimum input 
reaches a certain threshold, thus permitting non-linear 
relationships. These tend to work better on smaller 
networks than linear equations and better than 
multiplicative relationships in modeling regulation 
(Table 1).

Closely related to Boolean approaches are decision/
regression tree approaches that embody paths of 
threshold tests (where each path represents a Boolean 
conjunction of conditions) leading to a prediction (for 
example, of expression values). ‘Gene network inference 
with ensemble of trees 3’ (GENIE3 ) is a regression tree 
algorithm that can be applied to steady-state, time-series 
and/or mutational transcriptome data [35]. This approach 
has worked particularly well in ‘dialogue for reverse 
engineering assessments and methods 3’ (DREAM3) 
competitions that use in silico data as benchmarks for 
validating the predictive power of inferred networks [36].

‘Integrative genomic’ techniques analyze how changes 
can cause divergent behavior over time [37]. The idea is 
that genes are in some steady-state before some pertur-
bation occurs, and the technique follows the genes that 
change first, that change second and so on to try to guess 

causality. This is the qualitative idea behind the 
differential-equation approaches.

Pipeline approaches typically combine different algo-
rithms on different data types. For example, the Infere-
lator is a network-inference approach that uses 
differential-equation techniques and mutual information 
to integrate many different data types, including steady-
state, time-series and mutation/perturbation data [38,39]. 
These algorithms treat knowledge in a pipelined fashion. 
Thus, if physical experiments show that a target gene Z 
has potential connections from X and Y but not from W, 
then only X and Y will be considered in the subsequent 
analysis. The time-series-based inference algorithm then 
might use these potential edges to derive an ordinary 
differential-equation model that can combine linear and 
non-linear terms. The result of such a pipeline is a set of 
equations that estimate the change in transcription level 
of a target gene based on transcriptional levels of other 
genes using time-series data. Figure  1 illustrates the 
concept of such pipeline approaches, which refine large, 
information-poor networks into smaller, information-
rich networks with predictive power.

Finally, other work importantly suggests trying many 
network-inference methods in combination [20], showing 
empirically that a combination of strategies often leads to 
the best network resolution and supporting the 
widespread popular use of the ‘wisdom of crowds’ 
concept.

Validations of inferred GRNs (an experimentalist’s 
point of view)
GRN modeling described in the above sections comple-
ments genetic studies and generates hypotheses for TF-
target interactions to be tested, thus inspiring a new 
round of the systems-biology cycle of high-throughput 
experimentation for model validation and refinement 
(Figure  1). A variety of methods have been used to un-
cover the global structure of gene networks by inferring 
regulatory relationships between TFs and their target genes 
from genomic data [6,40-43], in particular transcriptional 
analysis and chromatin immuno-precipitation.

Table 1. Methods for network inference

Methods Information richness Scalability References

Correlation/mutual information Low High (thousands of genes) [20,28]

Partial correlation Medium Medium (up to 100 genes using heuristics) [29,33]

Differential equations Medium Medium [2,32,34,36]

Linear regression Medium Medium [38]

Non-linear regression High Low (up to 25 genes) [38]

Boolean High Low (up to 25 genes) [11,35]

It is clear that there is a trade-off between information richness (the number of factors that can be applied to predict gene expression) and the size of the analyzed 
network. Small networks can be handled by methods that are highly complex and information rich (many linear and non-linear factors can influence a gene within 
the method). Combining several small network modules holds the potential to analyze a large network [5], although this might not always work.
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The most common approach has been TF perturbation 
in stable overexpression or knockout/knockdown lines, 
followed by transcriptional analysis [44-47]. However, it 
remains unclear in such analyses whether changes in 
transcript levels are a direct consequence of TF manipu-
lation or whether these changes are caused by indirect or 
possibly pleiotropic effects. To overcome the limitation of 
this approach, several other techniques have been used to 
supplement transcriptional data, including yeast one-
hybrid assays [40] and electrophoretic mobility-shift 
assays [48-50]. However, while these methods can result 
in a significant enrichment of direct targets, they are 
often time-consuming and not easily applicable to high-
throughput analyses.

The introduction of ChIP-X, chromatin immunopreci pi-
tation (ChIP) followed by next-generation sequencing 
(ChIP-seq) or tiling array (ChIP-chip) has greatly 
improved the genome-wide identification of TF binding 
sites and has uncovered many potential direct targets 
[51-53]. Importantly, although ChIP-X reveals the binding 
of a TF onto a promoter, it does not indicate whether this 

results in activation/repression of gene expression [54]. 
Therefore, ChIP-X has often been combined with 
genome-wide transcriptional analysis to characterize the 
primary targets of a TF [55-57].

Recently, novel combinations of these technologies 
have yielded vastly improved knowledge about inter-
actions between TFs and their targets. For example, whole-
plant studies using dexamethasone (DEX)-inducible TF 
translocation into the nucleus followed by separate ChIP-
X experiments identified target genes both bound and 
regulated by a TF of interest [58-60]. Another new 
technology was recently described by Bargmann and 
colleagues [61] in which a protoplast system combined 
with fluorescence-activated cell sorting (FACS) has been 
employed to scale-up validation of GRNs in vivo. Briefly, 
plant protoplasts are transformed with plasmid harboring 
a fluorescent selection marker together with the over-
expression of a TF of interest fused to a glucocorticoid 
receptor from rat. Co-treatment of protoplasts with DEX 
and the protein synthesis inhibitor cycloheximide, which 
blocks secondary-target responses, results in the identi-
fication of only primary TF targets. This rapid technique 
makes it possible to perform high-throughput investi-
gations/validations of TFs and the GRNs they regulate in 
plants [61]. Data from such high-throughput TF-target 
validations can then be fed-back into network-inference 
pipelines to refine predicted edges in the derived GRNs, 
in a true systems-biology cycle (Figure 1).

Perspectives
Plant systems biology is at the beginning of a new era, in 
which machine-learning techniques and experimental 
investigations mutually and iteratively reinforce one 
another. We believe that this experimental-analytical 
symbiosis will lead plant biologists to better and deeper 
insights into biological phenomena and will encourage 
computer scientists to develop new algorithms. Together, 
this symbiotic collaboration should accelerate the under-
standing of plants as systems.
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Figure 1. An experimental/computational systems-biology cycle 
using different data types and feedback. Starting from many 
possible edges, different data types and their analyses successively 
reduce the size of the network, while increasing confidence in edges. 
(1) Correlation leads to pairwise associations of genes. (2) Transgenic 
manipulation permits the determination of the effect of mutations 
and overexpression of single genes. (3) Binding experiments (for 
example, Chip-Seq) reveals physical connectivity of a source gene to 
a target. (4) Time-series experiments along with machine-learning 
techniques lead to a weighted network where the weight on the 
edge from A to B determines the extent of influence of A on B. 
(5) Subsequent predictions followed by validations can then suggest 
the need for new experimentation, thus refueling the systems-
biology cycle.

Large network

P
hysical edges

3

4

5

Transgenic
TF perturbation

TF target binding
ChIP-Seq

Time series data
machine learning

Low information
weak priors

strong priors
Refin

ed
 e

dg
es

express
io

n 
an

al
ys

is

E
dg

es
 w

ith
 weights

Inferred
predictive network

High information
parsimonious network

Expression 
correlation networks

many possible low confidence edges

New Testing

2

1

Krouk et al. Genome Biology 2013, 14:123 
http://genomebiology.com/2013/14/6/123

Page 5 of 7



3Biochimie et Physiologie Moléculaire des Plantes (UMR 5004 CNRS-INRA-
SupAgro-UM2), Institut Claude Grignon, Place Viala, 34060 Montpellier Cedex 
1, France.

Published: 27 June 2013

References
1. Bonneau R: Learning biological networks: from modules to dynamics. Nat 

Chem Biol 2008, 4:658-664.
2. Bonneau R, Facciotti MT, Reiss DJ, Schmid AK, Pan M, Kaur A, Thorsson V, 

Shannon P, Johnson MH, Bare JC, Longabaugh W, Vuthoori M, Whitehead K, 
Madar A, Suzuki L, Mori T, Chang DE, Diruggiero J, Johnson CH, Hood L, Baliga 
NS: A predictive model for transcriptional control of physiology in a free 
living cell. Cell 2007, 131:1354-1365.

3. Robison K, McGuire AM, Church GM: A comprehensive library of DNA-
binding site matrices for 55 proteins applied to the complete Escherichia 
coli K-12 genome. J Mol Biol 1998, 284:241-254.

4. Salgado H, Gama-Castro S, Martinez-Antonio A, Diaz-Peredo E, Sanchez-
Solano F, Peralta-Gil M, Garcia-Alonso D, Jimenez-Jacinto V, Santos-Zavaleta A, 
Bonavides-Martinez C, Collado-Vides J: RegulonDB (version 4.0): 
transcriptional regulation, operon organization and growth conditions in 
Escherichia coli K-12. Nucleic Acids Res 2004, 32:D303-306.

5. Middleton AM, Farcot E, Owen MR, Vernoux T: Modeling regulatory 
networks to understand plant development: small is beautiful. Plant Cell 
2012, 24:3876-3891.

6. Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva M, 
Das P, Larrieu A, Wells D, Guédon Y, Armitage L, Picard F, Guyomarc’h S, Cellier 
C, Parry G, Koumproglou R, Doonan JH, Estelle M, Godin C, Kepinski S, 
Bennett M, De Veylder L, Traas J: The auxin signalling network translates 
dynamic input into robust patterning at the shoot apex. Mol Syst Biol 2011, 
7:508.

7. Sankar M, Osmont KS, Rolcik J, Gujas B, Tarkowska D, Strnad M, Xenarios I, 
Hardtke CS: A qualitative continuous model of cellular auxin and 
brassinosteroid signaling and their crosstalk. Bioinformatics 2011, 
27:1404-1412.

8. Havens KA, Guseman JM, Jang SS, Pierre-Jerome E, Bolten N, Klavins E, 
Nemhauser JL: A synthetic approach reveals extensive tunability of auxin 
signaling. Plant Physiol 2012, 160:135-142.

9. Pokhilko A, Fernandez AP, Edwards KD, Southern MM, Halliday KJ, Millar AJ: 
The clock gene circuit in Arabidopsis includes a repressilator with 
additional feedback loops. Mol Syst Biol 2012, 8:574.

10. Akman OE, Watterson S, Parton A, Binns N, Millar AJ, Ghazal P: Digital clocks: 
simple Boolean models can quantitatively describe circadian systems. 
J R Soc Interface 2012, 9:2365-2382.

11. Salazar JD, Saithong T, Brown PE, Foreman J, Locke JC, Halliday KJ, Carre IA, 
Rand DA, Millar AJ: Prediction of photoperiodic regulators from 
quantitative gene circuit models. Cell 2009, 139:1170-1179.

12. Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER: A gene regulatory 
network model for cell-fate determination during Arabidopsis thaliana 
flower development that is robust and recovers experimental gene 
expression profiles. Plant Cell 2004, 16:2923-2939.

13. La Rota C, Chopard J, Das P, Paindavoine S, Rozier F, Farcot E, Godin C, Traas J, 
Moneger F: A data-driven integrative model of sepal primordium polarity 
in Arabidopsis. Plant Cell 2011, 23:4318-4333.

14. Jaeger KE, Pullen N, Lamzin S, Morris RJ, Wigge PA: Interlocking feedback 
loops govern the dynamic behavior of the floral transition in Arabidopsis. 
Plant Cell 2013, 25:820-833.

15. Bujdoso N, Davis SJ: Mathematical modeling of an oscillating gene circuit 
to unravel the circadian clock network of Arabidopsis thaliana. Front Plant 
Sci 2013, 4:3.

16. Locke JC, Millar AJ, Turner MS: Modelling genetic networks with noisy and 
varied experimental data: the circadian clock in Arabidopsis thaliana. 
J Theor Biol 2005, 234:383-393.

17. Pokhilko A, Hodge SK, Stratford K, Knox K, Edwards KD, Thomson AW, Mizuno 
T, Millar AJ: Data assimilation constrains new connections and 
components in a complex, eukaryotic circadian clock model. Mol Syst Biol 
2010, 6:416.

18. Pruneda-Paz JL, Kay SA: An expanding universe of circadian networks in 
higher plants. Trends Plant Sci 2010, 15:259-265.

19. Coen ES, Meyerowitz EM: The war of the whorls: genetic interactions 
controlling flower development. Nature 1991, 353:31-37.

20. Marbach D, Costello JC, Kuffner R, Vega NM, Prill RJ, Camacho DM, Allison KR, 
Consortium D, Kellis M, Collins JJ, Stolovitzky G: Wisdom of crowds for 
robust gene network inference. Nat Methods 2012, 9:796-804.

21. Albert R: Network inference, analysis, and modeling in systems biology. 
Plant Cell 2007, 19:3327-3338.

22. Ruffel S, Krouk G, Coruzzi GM: A systems view of responses to nutritional 
cues in Arabidopsis: toward a paradigm shift for predictive network 
modeling. Plant Physiol 2010, 152:445-452.

23. Mao L, Van Hemert JL, Dash S, Dickerson JA: Arabidopsis gene co-expression 
network and its functional modules. BMC Bioinformatics 2009, 10:346.

24. Gutierrez RA, Lejay LV, Dean A, Chiaromonte F, Shasha DE, Coruzzi GM: 
Qualitative network models and genome-wide expression data define 
carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome 
Biol 2007, 8:R7.

25. Katari MS, Nowicki SD, Aceituno FF, Nero D, Kelfer J, Thompson LP, Cabello JM, 
Davidson RS, Goldberg AP, Shasha DE, Coruzzi GM, Gutiérrez RA: VirtualPlant: 
a software platform to support systems biology research. Plant Physiol 
2010, 152:500-515.

26. Gutierrez RA, Stokes TL, Thum K, Xu X, Obertello M, Katari MS, Tanurdzic M, 
Dean A, Nero DC, McClung CR, Coruzzi GM: Systems approach identifies an 
organic nitrogen-responsive gene network that is regulated by the master 
clock control gene CCA1. Proc Natl Acad Sci U S A 2008, 105:4939-4944.

27. Sulpice R, Pyl E-T, Ishihara H, Trenkamp S, Steinfath M, Witucka-Wall H, Gibon 
Y, Usadel B, Poree F, Piques MC, Von Korff M, Steinhauser MC, Keurentjes JJ, 
Guenther M, Hoehne M, Selbig J, Fernie AR, Altmann T, Stitt M: Starch as a 
major integrator in the regulation of plant growth. Proc Natl Acad Sci U S A 
2009, 106:10348-10353.

28. Carrera J, Rodrigo G, Jaramillo A: Model-based redesign of global 
transcription regulation. Nucleic Acids Res 2009, 37:e38.

29. Ingkasuwan P, Netrphan S, Prasitwattanaseree S, Tanticharoen M, 
Bhumiratana S, Meechai A, Chaijaruwanich J, Takahashi H, Cheevadhanarak S: 
Inferring transcriptional gene regulation network of starch metabolism in 
Arabidopsis thaliana leaves using graphical Gaussian model. BMC Syst Biol 
2012, 6:100.

30. Ma S, Gong Q, Bohnert HJ: An Arabidopsis gene network based on the 
graphical Gaussian model. Genome Res 2007, 17:1614-1625.

31. Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim YS, 
Penfold CA, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, 
Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K, 
Mead A, Buchanan-Wollaston V: High-resolution temporal profiling of 
transcripts during Arabidopsis leaf senescence reveals a distinct 
chronology of processes and regulation. Plant Cell 2011, 23:873-894.

32. Krouk G, Mirowski P, LeCun Y, Shasha DE, Coruzzi GM: Predictive network 
modeling of the high-resolution dynamic plant transcriptome in response 
to nitrate. Genome Biol 2010, 11:R123.

33. Schäfer J, Strimmer K: An empirical Bayes approach to inferring large-scale 
gene association networks. Bioinformatics 2005, 21:754-764.

34. Yuan J, Doucette CD, Fowler WU, Feng XJ, Piazza M, Rabitz HA, Wingreen NS, 
Rabinowitz JD: Metabolomics-driven quantitative analysis of ammonia 
assimilation in E. coli. Mol Syst Biol 2009, 5:302.

35. Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P: Inferring regulatory 
networks from expression data using tree-based methods. PLoS One 2010, 
5:e12776.

36. Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, 
Clarke ND, Altan-Bonnet G, Stolovitzky G: Towards a rigorous assessment of 
systems biology models: the DREAM3 challenges. PLoS One 2010, 5:e9202.

37. Mendoza-Parra MA, Walia M, Sankar M, Gronemeyer H: Dissecting the 
retinoid-induced differentiation of F9 embryonal stem cells by integrative 
genomics. Mol Syst Biol 2011, 7:538.

38. Greenfield A, Hafemeister C, Bonneau R: Robust data-driven incorporation 
of prior knowledge into the inference of dynamic regulatory networks. 
Bioinformatics 2013, 29:1060-1067.

39. Lingeman JM, Shasha D: Network Inference in Molecular Biology: A Hands-on 
Framework. New York: Springer; 2012.

40. Brady SM, Zhang L, Megraw M, Martinez NJ, Jiang E, Yi CS, Liu W, Zeng A, 
Taylor-Teeples M, Kim D, Ahnert S, Ohler U, Ware D, Walhout AJ, Benfey PN: 
A stele-enriched gene regulatory network in the Arabidopsis root. Mol Syst 
Biol 2011, 7:459.

41. Chew YH, Halliday KJ: A stress-free walk from Arabidopsis to crops. Curr Opin 
Biotechnol 2011, 22:281-286.

42. Edwards MA, Whitworth AL, Unwin PR: Quantitative analysis and 

Krouk et al. Genome Biology 2013, 14:123 
http://genomebiology.com/2013/14/6/123

Page 6 of 7



application of tip position modulation-scanning electrochemical 
microscopy. Anal Chem 2011, 83:1977-1984.

43. Petricka JJ, Benfey PN: Reconstructing regulatory network transitions. 
Trends Cell Biol 2011, 21:442-451.

44. Suzuki M, Ketterling MG, Li QB, McCarty DR: Viviparous1 alters global gene 
expression patterns through regulation of abscisic acid signaling. Plant 
Physiol 2003, 132:1664-1677.

45. Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E: Genome-wide 
profiling of stored mRNA in Arabidopsis thaliana seed germination: 
epigenetic and genetic regulation of transcription in seed. Plant J 2005, 
41:697-709.

46. Nakashima K, Fujita Y, Katsura K, Maruyama K, Narusaka Y, Seki M, Shinozaki K, 
Yamaguchi-Shinozaki K: Transcriptional regulation of ABI3- and ABA-
responsive genes including RD29B and RD29A in seeds, germinating 
embryos, and seedlings of Arabidopsis. Plant Mol Biol 2006, 60:51-68.

47. Carrera E, Holman T, Medhurst A, Dietrich D, Footitt S, Theodoulou FL, 
Holdsworth MJ: Seed after-ripening is a discrete developmental pathway 
associated with specific gene networks in Arabidopsis. Plant J 2008, 
53:214-224.

48. Ryu KH: The WEREWOLF MYB protein directly regulates CAPRICE 
transcription during cell fate specification in the Arabidopsis root 
epidermis. Development 2005, 132:4765-4775.

49. Reeves WM, Lynch TJ, Mobin R, Finkelstein RR: Direct targets of the 
transcription factors ABA-Insensitive(ABI)4 and ABI5 reveal synergistic 
action by ABI4 and several bZIP ABA response factors. Plant Mol Biol 2011, 
75:347-363.

50. Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Perez-Perez J, Solano R, 
Leyva A, Paz-Ares J: A central regulatory system largely controls 
transcriptional activation and repression responses to phosphate 
starvation in Arabidopsis. PLoS Genet 2010, 6.

51. Kuo MH, Allis CD: In vivo cross-linking and immunoprecipitation for 
studying dynamic protein:DNA associations in a chromatin environment. 
Methods 1999, 19:425-433.

52. de Folter S, Urbanus SL, van Zuijlen LG, Kaufmann K, Angenent GC: Tagging 
of MADS domain proteins for chromatin immunoprecipitation. BMC Plant 
Biol 2007, 7:47.

53. Zhu JY, Sun Y, Wang ZY: Genome-wide identification of transcription factor-
binding sites in plants using chromatin immunoprecipitation followed by 
microarray (ChIP-chip) or sequencing (ChIP-seq). Methods Mol Biol 2012, 
876:173-188.

54. Lickwar CR, Mueller F, Hanlon SE, McNally JG, Lieb JD: Genome-wide protein-
DNA binding dynamics suggest a molecular clutch for transcription factor 
function. Nature 2012, 484:251-255.

55. Oh E, Kang H, Yamaguchi S, Park J, Lee D, Kamiya Y, Choi G: Genome-wide 
analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 
3-LIKE5 during seed germination in Arabidopsis. Plant Cell Online 2009, 
21:403-419.

56. Wang F, Perry SE: Identification of direct targets of FUSCA3, a key regulator 
of Arabidopsis seed development. Plant Physiol 2013, 161:1251-1264.

57. Hsieh WP, Hsieh HL, Wu SH: Arabidopsis bZIP16 transcription factor 
integrates light and hormone signaling pathways to regulate early 
seedling development. Plant Cell 2012, 24:3997-4011.

58. Monke G, Seifert M, Keilwagen J, Mohr M, Grosse I, Hahnel U, Junker A, 
Weisshaar B, Conrad U, Baumlein H, Altschmied L: Toward the identification 
and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Res 
2012, 40:8240-8254.

59. Zheng Y, Ren N, Wang H, Stromberg AJ, Perry SE: Global identification of 
targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant 
Cell 2009, 21:2563-2577.

60. Gorte M, Horstman A, Page RB, Heidstra R, Stromberg A, Boutilier K: 
Microarray-based identification of transcription factor target genes. In 
Plant Transcription Factors. Volume 754. Edited by Yuan L, Perry SE. Totowa, NJ: 
Humana Press; 2011:119-141

61. Bargmann BO, Marshall-Colon A, Efroni I, Ruffel S, Birnbaum KD, Coruzzi GM, 
Krouk G: TARGET: A transient transformation system for genome-wide 
transcription factor target discovery. Mol Plant 2013, 6:978-980.

doi:10.1186/gb-2013-14-6-123
Cite this article as: Krouk G, et al.: Gene regulatory networks in plants: 
learning causality from time and perturbation. Genome Biology 2013, 14:123.

Krouk et al. Genome Biology 2013, 14:123 
http://genomebiology.com/2013/14/6/123

Page 7 of 7


	Abstract
	Introduction
	Successful case studies of learning gene-regulatory networks in plants
	Analytical approaches used to infer causality in the gene-regulatory network (a mathematical point of view)
	Validations of inferred GRNs (an experimentalist’s point of view)
	Perspectives
	Abbreviations
	Competing interests
	Acknowledgements
	Author details
	References

