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Abstract

Background: We describe the genome of the western painted turtle, Chrysemys picta bellii, one of the most
widespread, abundant, and well-studied turtles. We place the genome into a comparative evolutionary context,
and focus on genomic features associated with tooth loss, immune function, longevity, sex differentiation and
determination, and the species’ physiological capacities to withstand extreme anoxia and tissue freezing.

Results: Our phylogenetic analyses confirm that turtles are the sister group to living archosaurs, and demonstrate
an extraordinarily slow rate of sequence evolution in the painted turtle. The ability of the painted turtle to
withstand complete anoxia and partial freezing appears to be associated with common vertebrate gene networks,
and we identify candidate genes for future functional analyses. Tooth loss shares a common pattern of
pseudogenization and degradation of tooth-specific genes with birds, although the rate of accumulation of
mutations is much slower in the painted turtle. Genes associated with sex differentiation generally reflect
phylogeny rather than convergence in sex determination functionality. Among gene families that demonstrate
exceptional expansions or show signatures of strong natural selection, immune function and musculoskeletal
patterning genes are consistently over-represented.

Conclusions: Our comparative genomic analyses indicate that common vertebrate regulatory networks, some of
which have analogs in human diseases, are often involved in the western painted turtle’s extraordinary
physiological capacities. As these regulatory pathways are analyzed at the functional level, the painted turtle may
offer important insights into the management of a number of human health disorders.
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Background
Turtles (also known as chelonians or Testudines) are an
enigma. As the vertebrate paleontologist Alfred Romer
noted half a century ago, ‘The chelonians are the most
bizarre, and yet in many respects the most conservative, of
reptilian groups. Because they are still living, turtles are
commonplace objects to us; were they entirely extinct,
[they] would be a cause for wonder’ [1]. From the Triassic
to the present, turtles have been morphologically conserva-
tive, and even the earliest turtles [2] are instantly recogniz-
able. The living crown group of turtles extends back at
least 210 million years [3] and is characterized by a number
of unique morphological and physiological features. Besides
their distinctive shell, turtles have extremely long lifespans,
are often reproductively active at very advanced ages, often
determine sex by the temperature at which eggs incubate,
are the most anoxia-tolerant tetrapods known, and have
the capacity in some species to freeze nearly solid, thaw,
and survive with negligible tissue damage. The western
painted turtle genome harbors a wealth of information on
the genetic basis of these and other adaptations that char-
acterize this unique vertebrate lineage.
Two of the great physiological challenges to vertebrate

survival are hypoxia and cold tolerance. Particularly for
temperate ectotherms like the western painted turtle,
the two are closely linked, because winter hibernation
often occurs underwater in ice-locked ponds, and
involves long periods with limited access to oxygen. The
western painted turtle is capable of surviving, with no
loss of physiological function, 4 months under condi-
tions of exceptionally low oxygen availability at 3°C [4]
and at least 30 h at 20ºC [5]. This anoxia tolerance,
when combined with the ability to survive freezing of
50% body water [6], allows hatchling painted turtles to
endure long winters in their nests across the northern
part of their range in North America. It also provides an
unprecedented model to study natural mechanisms that
protect the heart and brain from hypoxia-induced injury.
Cardiac infarct and cerebral stroke are the first and
third leading causes of death in the United States [7],
and while conventional therapies continue to extend
human lifespan, progress in improving outcomes from
these conditions has been limited. Our genomic analyses
indicate that painted turtles frequently achieve their
extreme physiological capacities, at least in part, using
conserved amniote molecular pathways; functional ana-
lyses of these pathways across turtles with varying phy-
siological capacities thus may provide important insights
for human disease prevention.

Results and discussion
Reference genome
We sequenced the nuclear genome of a single female
western painted turtle, Chrysemys p. bellii, that we field-

collected from southern Washington, using a combina-
tion of next-generation whole genome shotgun and
Sanger-based BAC end reads (see Materials and Methods,
Sequencing and Assembly, Additional file 1, Tables S1, S2).
The assembly averages 18-fold coverage across 2.59 Gb
with an N50 scaffold size of 5.2 Mb, and represents at
least 93% of the genome. By all available measures, the
assembled sequences have sufficient nucleotide and struc-
tural accuracy to provide a suitable template for initial
analysis (see Materials and Methods, Assembly Quality
and Coverage Assessments).

Genome annotation
After soft masking the C. p. bellii genome with Repeat-
Masker [8], gene annotation was performed using the
homology-based pipeline GPIPE [9-11] using a non-
redundant protein set from human (Ensembl release
66), chicken (Ensembl release 66) and green anole
(Ensembl release 66) as template. Based on the quality
of the alignments with the template proteins, the con-
servation of exon boundaries and the absence of frame
shifts and premature stop codons, we predicted a total
of 21,796 protein-coding gene models in C. p. bellii,
including 144,670 exons (average 6.63 exons per gene),
and an average transcript size of 1,023 nucleotides
(median 743 nucleotides). Using cDNAs obtained
through 454 sequencing of libraries derived from brain,
testes, ovaries, and trunk, we identified a total of 40,091
exons within 7,961 gene models to which cDNAs could
be mapped.

Repeat structure
Approximately 10% of the C. p. bellii assembly contains
an abundance of transposable elements (TEs) that
include nearly 80 distinct lineages of RNA-derived retro-
transposons and DNA transposons, suggesting a long
and dynamic history of clade-specific genomic diversifi-
cation (see Additional file 1, Table S3, Additional file 2,
Figures S1-S4). The western painted turtle exhibits inter-
mediate TE copy number relative to birds and the lizard
Anolis, and is rich in LTR elements including endogen-
ous retroviruses, LINEs in the CR1 and RTE families,
predominantly MIR-like SINEs, and DNA transposons
(see Additional file 2, Figures S1-S3). These transposons
include 385 SPIN elements in the hAT-Charlie family not
previously detected by slot blot hybridization assays for
seven turtle and four crocodilian species [12]. Consistent
with the close evolutionary relationship between turtles
and archosaurs (birds and crocodilians, see below), these
elements and the overall genome have a GC content of
43% that is more similar to birds than Anolis [9,13]
(see Materials and Methods, Repeat Structure, Additional
file 1, Table S3, Additional file 2, Figures S1-S6). Chrys-
emys p. bellii also exhibits a moderate density of tandem

Bradley Shaffer et al. Genome Biology 2013, 14:R28
http://genomebiology.com/2013/14/3/R28

Page 2 of 22



repeats (1% genomic sequence coverage with an average
density of 111 repeats per MB) with length and frequency
distributions more similar to birds than to Anolis [13].
Overall, the repetitive landscape of C. p. bellii exhibits a
substantial amount of lineage-specific evolution that dis-
tinguishes turtles from other major amniote taxa but
exhibits some similarities to archosaurs, in keeping with
their sister group relationship. Long generation times
and a slow rate of molecular evolution may have facili-
tated the diversification of turtle repeats, potentially
impacting both genomic stability and dynamics of tran-
scriptome function [14-17].

Isochore structure
The presence of GC-rich isochores is a well-known feature
of birds and mammals, but is a minor component of geno-
mic structure in the lizard Anolis. The western painted
turtle genome has an average GC proportion of 0.43,
which is consistent with other amniotes (see Additional
file 2, Figure S7). At a 3-kb scale, the standard deviation of
GC content is 0.059, which is also intermediate among
vertebrate genomes (see Additional file 2, Figure S7). The
standard deviation of GC content in the western painted
turtle is intermediate between those of the lizard Anolis
and mammals/birds for sliding window sizes ranging from
5 kb to 320 kb (Figure 1), suggesting that the gene-rich
isochores that characterize the endothermic birds and
mammals are not as prominent a feature of the western
painted turtle genome (see Materials and Methods,
Isochores, Additional file 1, Table S4, Additional file 2,
Figures S7-S9). For the western painted turtle, we found a
weak but significant correlation between the GC content
of protein-coding genes and their flanking sequence, indi-
cating a slight, but potentially important relationship
between genomic environment and the nucleotide compo-
sition of genes (see Additional file 2, Figure S8). We also
found a slight negative relationship between the GC con-
tent and the length of intergenic sequences in the western
painted turtle (not shown); thus, GC-rich regions tend to
be more gene dense. This is a strong relationship in mam-
mals and birds, but is non-existent in Anolis.
To examine the evolution of GC content in the context

of the vertebrate phylogeny, we quantified GC content at
third codon positions (GC3) using the 2,366 simple
orthologs (1:1) identified from the OPTIC pipeline
orthology predictions for zebrafish, pufferfish, chicken,
zebrafinch, western painted turtle, green anole, platypus,
mouse, and human (see Materials and Methods, Identifi-
cation of gene family expansion/contraction for methods
on determining gene homology). We used the program
NHML (with default parameters) to estimate: (1) ances-
tral GC content; and (2) GC3*, the equilibrium GC con-
tent, which can be interpreted as the GC content toward
which a lineage is evolving. Our results are consistent

with trends from previous phylogenetic analyses of GC
content [18,19], with the exception that chicken seems to
be in equilibrium with regard to GC3. The western
painted turtle shows a striking decrease in GC3 from its
current value of 46.74% to a GC3* value of 38.90%, indi-
cating an erosion of GC content that is also seen in
Anolis (see Additional file 2, Figure S9) [18].
One mechanism that can contribute to this erosion is

homogenization of recombination. Recombination is corre-
lated with several evolutionary processes and genomic fea-
tures. For instance, regions with higher recombination
activity experience more efficient selection as well as higher
GC content in mammals and birds. It stands to reason that
genes with higher GC3 will have a lower lineage-specific
dN/dS; that is, genes with higher GC content will experi-
ence more efficient selection. To test this, we divided up
the genes from human, chicken, and western painted turtle
into ‘high GC3’ and ‘low GC3’ genes based on the GC3
values of genes for each taxon. We then examined the dis-
tribution of dN/dS values between these two groups for
each taxon. We expected, if recombination has a landscape
similar to mammals and birds, that the ‘high GC3’ genes
will have a lower lineage-specific dN/dS and ‘low GC3’
genes will have greater dN/dS values. We found this to be
the case in human and chicken [18], indicating a heteroge-
neous recombination landscape (see Additional file 1,
Table S4). In the painted turtle, we found that there is an
even greater disparity in dN/dS between ‘high GC3’ and
‘low GC3’ genes than in human and chicken, indicating
that an even more heterogeneous landscape exists in turtle.
This may indicate that rather than a recombination-based
mechanism driving GC content in turtle (for example, GC-
biased gene conversion), mutational biases are playing an
important role in the trajectory of GC3.

Phylogeny and evolutionary rates
The phylogenetic position of turtles has remained one of
the last unresolved problems in vertebrate evolutionary
history, with recent hypotheses suggesting widely dispa-
rate placements [20,21]. Our phylogenetic analysis of
1,955 sets of rigorously screened gene orthologs (see
Materials and Methods, Multiple alignments and gene
orthologs) for eight vertebrate species (human, platypus,
chicken, zebrafinch, anole, turtle, python, and alligator),
analyzed separately or as a concatenated dataset, concur
with two recent phylogenomic analyses [20,22] in placing
turtles as the sister group to Archosauria with strong sta-
tistical support (Figure 2). Thus, based on independent,
genome-scale analyses, the phylogenetic placement of
turtles as well-nested within diapsid amniotes appears to
be relatively secure.
We also estimated the relative rate of substitution in a

smaller dataset that was designed to minimize missing
data. This dataset comprised 309 orthologs that were
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identified in all eight species. Our analyses indicate that
the turtle lineage has undergone a remarkable substitu-
tion-rate slowdown relative to other amniotes (Figure 2).
Estimates of relative evolutionary rates under a relaxed
molecular clock suggest that turtles have the slowest rate
of substitution among the eight representative amniote
lineages analyzed. Turtle genomes evolve at about one-
third the rate seen in humans, and roughly one-fifth the
rate of the fastest-evolving python lineage (see Materials
and Methods, Phylogeny and substitution rate, Additional
file 1, Tables S5-S6). Given the long generation time that
characterizes turtles, our comparative analysis is consistent
with the negative relationship between generation time
and rate of molecular evolution found in reptiles [23] and
other amniotes [24], although the observed slowdown in
archosaurs and turtles may also suggest a broad, lineage-
specific effect.

Extreme anoxia tolerance in the painted turtle
Although all turtles can withstand anoxia for a few hours
with no discernable tissue damage, the painted turtle is a
candidate for the most extreme anoxia-tolerant tetrapod
known. To explore the transcriptomic basis of this
extreme anoxia tolerance, we assembled a gene expres-
sion profile by sequencing poly A-enriched RNA isolated
from the ventricle (heart) and telencephalon (brain) of
normoxic and anoxic (n = 4 turtles/group, 24 h at 19ºC)
adult western painted turtles (see Materials and Methods,
Anoxic gene expression). FPKM (Fragments per kilobase
of exon model per million mapped fragments) values
from 13,236 western painted turtle genes with human
orthologs were interrogated (from a starting pre-filtering
pool of 22,174 gene orthologs) and analyzed with
ANOVA. Differential gene expression significantly
increased in brain (19 genes) and heart (23 genes) (see
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Additional file 1, Tables S7, S8), mirroring previous work
showing up-regulated gene expression in response to
hypoxia in other vertebrate tissues, including many
cancers.
The largest overall change in expression was in

APOLD1, an apolipoprotein encoding gene whose tran-
script levels increased 128-fold in telencephalon and 19-
fold in ventricle (see Additional file 1, Tables S7, S8;
Additional file 2, Figure S10). APOLD1 expression mod-
erately increases during hypoxia in human microvascular
endothelial cell culture, although its exact function
remains unclear [25]. Other highly differentially
expressed genes (>10-fold; FOS, JUNB, ATF3, PTGS2,
BTG1/2, and EGR1) encode proteins that, individually
and in dimeric forms, have been implicated in the control
of cellular proliferation, cancers, and tumor suppression
[26-29]. The 30-fold increase in a gene orthologous to
SLC2A1 (see Additional file 1, Table S8, Additional file 2,
Figure S11), which encodes the glucose transporter
GLUT-1, is also exceptional since deficiencies in mem-
brane glucose transport underlie diabetes in humans. An
understanding of the mechanism by which membrane
GLUT-1 levels increase in the turtle would be a useful
contribution to human diabetes research. Decreases in

gene expression were fewer and found only in ventricle
(see Additional file 1, Table S9; Additional file 2, Figure
S12), but included decreases in CDO, which is important
in regulating intracellular cysteine as well as levels of the
endogenous metabolic depressant hydrogen sulfide
[30,31], and genes involved in mRNA splicing (SRSF5)
[32] and tumor proliferation (MKNK2) [33].
These analyses demonstrate the power of the western

painted turtle as a model for the evolution of anoxia toler-
ance by regulatory changes utilizing broadly conserved
vertebrate genes, including many genes that lead to patho-
genesis in humans. Clearly, further study of the processes
that link these regulatory changes to anoxia tolerance are
a next important step. Although this is yet to be tested, we
also note that the regulatory pathways that evolved in the
western painted turtle could lead to the identification of
targets for therapeutic intervention in human diseases
involving hypoxic injury and possibly tumorigenesis.

A novel microRNA associated with freeze tolerance in
hatchling painted turtles
Freeze tolerance constitutes a second suite of physiological
adaptations that are integral to winter survival for hatchl-
ing painted turtles and other species that overwinter in

Figure 2 A revised phylogeny of major amniote lineages and their rates of molecular evolution. (a) Bayesian phylogram depicting the
relationships of the eight primary amniote lineages, and their rates of molecular evolution. The phylogeny demonstrates the sister group
relationship of turtle and archosaurs (allligator plus birds). The numbers at nodes denote posterior probabilities (all are at the maximum of 1.0).
(b) The histogram shows the relative rate of substitution inferred for each lineage under a relaxed clock. For analysis details, see Materials and
Methods, Phylogeny and substitution rate).
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shallow terrestrial nests. Molecular adaptations that
underlie natural freezing survival in C. p. bellii include
strong metabolic rate depression, use of anaerobic meta-
bolism (see Extreme Anoxia Tolerance in the Painted Tur-
tle), and selective up-regulation of genes involved in key
cellular processes [34].
Entrance into hypometabolism involves regulatory

changes in multiple metabolic processes coordinated by
extracellular stimuli that are readily induced and reversed
to allow smooth transitions to and from the frozen state.
MicroRNA regulation of mRNA transcripts meets these
criteria and is involved in other models of stress-induced
metabolic rate depression [35]. Using the western painted
turtle genome, we retrieved the precursor sequence of
miR-29b, a microRNA involved in DNA methylation and
regulation of glucose transport [36,37] that is often asso-
ciated with freeze and anoxia tolerance (see Materials
and Methods, Freeze tolerance). Based on this sequence,
the secondary structure of western painted turtle pre-
miR-29b was predicted to contain a single nucleotide
mutation (nuc-43) resulting in a larger terminal stem-
loop compared to the less freeze tolerant turtle Apalone
spinifera and Homo sapiens. Although the functional sig-
nificance of this mutation is unknown, microRNAs are
generally extremely conserved across vertebrates, and
nucleotide structures that restrain the terminal loop
region (as predicted for human and other turtles) can
decrease the efficiency of Dicer processing of precursor
microRNA transcripts in the range of 50% (Figure 3A)
[38]. In addition to loop flexibility, slight alterations to
loop structure and nucleotide sequence can influence
interactions between pre-microRNA and terminal loop
binding proteins, impacting processing efficiency. Consis-
tent with the hypothesis that enhanced microRNA pro-
cessing under low temperature stress facilitates freezing
survival, quantitative RT-PCR (see Materials and Meth-
ods, Freeze tolerance) revealed a mild but statistically sig-
nificant 1.3-fold increase in processed mature miR-29b
levels in liver of hatchling turtles in response to 24 h
freezing; expression was maintained and possibly
increased during subsequent thawing (Figure 3B).
Although these results require additional functional ana-

lyses and are clearly preliminary, they point to future work
on miR-29b as a potential candidate for freeze tolerance
work on turtles with this physiological capacity. With
refined genomic and comparative data across freeze toler-
ant and intolerant turtles, future studies of turtle freeze
tolerance should help confirm or refute our interpretation
that mutations in miR-29b are an important component
of freeze tolerance in turtles.

Tooth loss pseudogenization
Turtles lost the ability to form teeth approximately 150-
200 million years ago, making them the oldest extant

edentulous lineage of tetrapods (birds lost teeth approxi-
mately 80-100 million years ago) [39]. Previous studies in
birds and edentulous mysticete (baleen) whales demon-
strated that tooth loss is closely associated with the pseu-
dogenization and subsequent degradation of the tooth-
specific genes enamelin (ENAM), amelogenin (AMEL),
ameloblastin (AMBN), dentin sialophosphoprotein
(DSPP), and enamelysin (MMP20) [40,41]. We identified
the majority of turtle pseudo-exons in their chromoso-
mally syntenic regions (see Materials and Methods, Tooth
loss) when compared to other amniotes (Figure 4), consis-
tent with the very slow rate of genomic change seen in
chelonians (see Figure 2). Turtle ENAM, AMEL, and
MMP20 all contain premature stop codons (exons 5, 3,
and 2, respectively) in addition to highly degenerated
sequences. AMBN, while somewhat more conserved, has a
premature stop codon in exon 7. While DSPP exons 1 and
2 are relatively conserved, all subsequent exons were uni-
dentifiable. Sequence identity scores between pseudogene
exons identified in turtle and chicken were not signifi-
cantly different from each other compared to their func-
tional orthologs in crocodilians (see Materials and
Methods, Tooth loss, Additional file 1, Tables S10, S11),
even though turtles lost their teeth approximately 50-100
million year earlier.
This extremely conservative pattern of tooth-loss

pseudogenization across amniotes is consistent with a
single evolutionary origin (and regulatory network) of
teeth, and suggests that the deterioration of this pathway
evolved independently (that is, is homoplastic) in turtles,
whales, and birds. This is also consistent with the fossil
record, as early members of all three lineages are known
to be toothed. However, concordant with their overall
slow rate of molecular evolution, the tooth-specific
genes in turtles have accumulated mutations at roughly
half the rate of accumulation found in birds.

The genomic basis of longevity in turtles
One of the defining features of turtles as a lineage is their
extreme longevity (many species live 100 years or more),
and we used the western painted turtle genome to investi-
gate this quintessential chelonian feature. Based on previous
work implicating the shelterin complex encoding genes in
exceptional longevity in the naked mole rat [42], we evalu-
ated (by BLAST searches of all available turtle sequence
data including unplaced scaffolds, see Materials and Meth-
ods, Aging and longevity, Additional file 1, Table S12) the
status of the shelterin complex in the western painted turtle
genome. Even with this comprehensive search, we were
unable to find orthologs for three of the five genes (POT1,
TERF2IP, TEP1) in the western painted turtle. Given that
TEP1 is also absent in birds, this result strongly suggests
that turtles (and their sister group, the archosaurs) do not
share this longevity mechanism with the naked mole rat.
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Figure 3 Western painted turtle miR-29b and response to freezing. (a) Nucleotide sequence and predicted secondary structure of pre-miR-
29b transcripts from H. sapiens, A. spinifera, and C. p. bellii at 25 C. Nucleotide substitution which leads to differential terminal stem-loop
formation that is unique to C. p. bellii is circled. (b) Relative expression levels of miR-29b as assessed by quantitative RT-PCR in liver samples of
hatchling western painted turtles under control (5°C acclimated), 24 h frozen (at -2.5°C), or 4 h thawed (at 5°C) conditions. Data are means ± s.e.
m. (n = 5 different animals). Parallel analysis of 5S rRNA found no significant changes between control and experimental conditions for this
reference RNA. * Significantly different from the corresponding control (P <0.05).
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We also examined genes that have apparently been
lost in the western painted turtle (and were also absent
in our searches of all other available turtle genomes) to

investigate their relevance to aging based on their
orthology to known aging-linked genes in model organ-
isms [43]. Specifically, lowered activity of ATP5O in the

Figure 4 Conserved syntenic regions containing tooth-specific genes across toothed (human, anole) and edentulous (turtle, chicken)
vertebrates. AMBN and ENAM are in a reptile-specific chromosomal region, precluding the use of human as a reference sequence for these
genes. Dashed outlines indicate pseudogenization.
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nematode C. elegans increases longevity [44], while
PLCG2 is a crucial intracellular signaling modulator and
seems to be negatively affected by aging [45]. Although
confirming the absence of genes is difficult with incom-
pletely assembled genomes, the western painted turtle
genome is at least 93% complete, and their absence in
other turtle genomes is compelling (see Additional file
1, Table S12). Among these presumably missing genes,
the lack of ATP5O (for which we found no hits in any
turtle) and PLCG2 (where we found evidence for a total
of six out of 30 exons across all turtles) may be impor-
tant in the extraordinary longevity of turtles.

Temperature-dependent sex determination/differentiation
(TSD) genes
Since the first realization that many, but not all, turtles
have TSD, turtles have become a model system for com-
paring the gene networks controlling genotypic sex
determination (GSD) and TSD. Phylogenetic reconstruc-
tion indicates that the ancestral condition of sex deter-
mination in turtles and crocodilians was thermosensitive
(TSD), and that GSD has re-evolved in several turtle
lineages [46]. Although it is now clear that TSD and
GSD each encompass multiple mechanisms whose
divergence involves regulatory and structural evolution
affecting the level of plasticity and canalization of verte-
brate sexual development [47,48], it also remains the
case that transitions between TSD and GSD have
occurred many times, and that TSD is the ancestral con-
dition in turtles. Genomic analyses of TSD and GSD
turtles (and crocodilians) can provide important clues to
help decipher the changes in genetic architecture that
underlie these evolutionary transitions. Comparative
analysis of genomes and transcriptomes from TSD tur-
tles (Chrysemys p. bellii, Chelydra serpentina, Trachemys
scripta) and the GSD softshell turtle Apalone mutica (all
data produced by our group) from early through late
embryonic stages revealed that virtually all of the known
vertebrate genes involved in sexual differentiation are
present in turtle genomes and active during sexual
development (see Materials and Methods, Sex determi-
nation/differentiation, Additional file 1, Table S13).
We took a gene-tree reconstruction approach to exam-

ine the phylogenies of the coding regions of five key
genes involved in the gonadogenesis regulatory network
whose transcriptional responses have been studied in the
western painted turtle (WT1, SF1, SOX9, DMRT1, and
AROMATASE [48,49], Figure 5). Although the roles of
these genes in the TSD/GSD transition remains incom-
pletely understood, they are important in sexual differen-
tiation in a variety of vertebrates including reptiles. Our
primary goal was to ask whether these individual gene
trees cluster taxa based on their phylogenetic relation-
ships (as might be expected if independent TSD/GSD

transitions have evolved that do not mask phylogeny) or
on their TSD/GSD phenotype. Consistent with their phy-
logenetic relationships, our gene tree analyses generally
placed the monophyletic set of turtle orthologs as the sis-
ter group to archosaurs (compare the relationships of
turtles and crocodilians in Figure 2 with Figure 5),
although in one case (WT1) TSD turtles and crocodilians
were sister groups (Figure 5). However, within-turtle
relationships of these five gene trees often resolve the
GSD softshell Apalone spinifera as sister group to the
remaining turtles, rather than in its generally established
placement as sister to the remaining cryptodires [50]. It
is well known that estimates of individual gene trees can
differ from species trees for purely statistical reasons, and
the inter-relationships of softshells to other turtles has
been notoriously difficult to determine with molecular
data [50-52].
Overall, there is no compelling evidence of clustering

TSD and GSD turtles, or TSD and GSD vertebrates that
is contrary to their phylogenetic relationships, suggesting
that strong convergence at the molecular level has not
occurred in these markers. Interestingly, dn/ds analysis
revealed that the molecular evolution of these elements is
driven overwhelmingly by purifying selection, with only
few instances of neutral evolution between some closely
related species pairs such as Trachemys scripta (TSC)
and Chrysemys p. bellii (CPI) for SF1, AROMATASE and
Wt1, TSC and Apalone spinifera (ASP) for SF1, ASP and
CPI for SF1. Thus, these analyses indicate that the pri-
mary patterns of gene tree evolution in these loci asso-
ciated with sex determination are driven by their
organismal (phylogenetic) history rather than TSD/GSD
functionality.

Immune system genomics
Given the striking preponderance of expansions of
immune function genes (see below), and their potential
importance in the extended life spans of turtles, we char-
acterized a large panel of immune-function genes in the
western painted turtle genome. We aligned the C. picta
bellii genome against a sequence database of approxi-
mately 3,000 immune-function related genes developed
from a diverse set of 14 vertebrates ranging from lamprey
to mammals (see Materials and Methods, Immune system).
Blast searches of the C. picta bellii genome against this
database resulted in the identification of 110 genes, 100 of
which were confirmed with reciprocal alignments; 73 were
also identified in either cDNA or predicted gene sequences
(see Additional file 1, Table S14). The cDNA represented a
small number of tissues/developmental stages, and 73/110
(66%) confirmation of expression is very encouraging.
The adaptive immune response of turtles is generally

slower and less robust than its mammalian counterpart,
and does not consistently demonstrate evidence of a
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memory response [53,54]. However, we identified several
major components necessary for adaptive immunity and
generation of immune memory including CD4, MHCII,
and the immunoglobulin heavy chain locus (see Addi-
tional file 1, Table S14). Our analysis also demonstrates
that the western painted turtle has a unique repertoire of
toll-like receptors (TLRs), comprised of those found in
amphibians, fish, birds, and mammals. This includes a
TLR15-like receptor that has previously only been
defined in birds, and is known to interact with bacterial
pathogens including Salmonella [55] (see Additional file
1, Table S15). Given the delayed adaptive response and
poor generation of immune memory, combined with
their diverse set of TLRs, we predict that turtles should
rely more heavily on the non-specific innate immune
response to effectively recognize and initiate appropriate
responses to pathogens. This initial response would be
followed by a more moderate adaptive response that,
because of the low specificity due to lack of immune
memory formation, may serve as a general mechanism to
combat remaining pathogens. Given the overall low spe-
cificity of their innate and adaptive immune responses, it
seems that turtles are able to adequately balance their
immune compartments to eliminate pathogens, while
simultaneously avoiding damage to self-tissues as a result
of an overactive immune response.

Gene family expansions
Gene family expansions point to candidate sets of genes
of particular importance in chelonian survival and evolu-
tion. After annotating the western painted turtle genome
(see Materials and Methods, Identification of gene family
expansion/contraction, Additional file 1, Table S16), we
used phylogenetic reconstructions of the genomes of
three mammals (human, mouse, platypus), two birds
(chicken, zebrafinch), one lizard (green anole), and two
fish (tetraodon, zebrafish) to identify one-to-one ortho-
logs, as well as gene losses and gene family expansions in
the western painted turtle genome. We identified 3,222
one-to-one orthologs across all nine species, 4,828 genes
among the seven amniote species, and 103 gene families
including 957 gene predictions that show expansion in
the western painted turtle lineage. Among these
expanded gene families, 15 of the 27 with four or more
members, which jointly account for 623 of 957 gene pre-
dictions, were annotated as being involved in immune
response (see Materials and Methods, Expansion of gene
families involved in the immune response, Figure 6, Addi-
tional file 1, Table S17); an additional large expansion
(106 members, 101 confirmed by manual curation) was
evident among the beta-keratins (see Materials and
Methods, Beta-keratin expansions) involved in the forma-
tion of scales, claws, and scutes that encase the shell [56].

Figure 5 Maximum likelihood estimates of the phylogenetic relationships among taxa for five genes involved in gonadogenesis.
Branch lengths are proportional to the number of substitutions per site; numbers at nodes are bootstrap proportions based on 500
pseudoreplicates. Colored branches denote the taxonomic group for each taxon. Tip font colors denote sex-determining mechanisms (red =
TSD, gray = GSD). For all species, the full coding region was utilized except where only partial sequences were available, in which case the tip is
denoted as (P).
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Additional analyses using beta-keratin mRNAs extracted
from the precursor cells of the shell of Pseudemys nelsoni
[56] indicates that there have been independent lineage-
specific expansions of the beta-keratins in birds and tur-
tles associated with the formation of feathers and the
shell (Li et al., unpublished results).

Patterns of natural selection
Genomic scans for positive selection across turtles consti-
tute a complementary strategy to identify genes underlying
chelonian adaptations. We examined a carefully screened
ortholog set of 4,136 genes (see Materials and Methods,
Ortholog sets) for eight vertebrate species (human, platy-
pus, chicken, zebrafinch, anole, turtle, python, and alliga-
tor) to detect signs of turtle lineage-specific positive
selection. Using branch-site likelihood-ratio tests [57] with
reduced parameterization [58] (see Materials and Meth-
ods, Positive selection), we identified 671 genes under posi-
tive selection (false discovery rate <0.1) (Accessory Data
File 1). Among these genes were several categories of
interest to notable physiological in turtles, several of which
we highlight here.
There were nine genes containing ankyrin repeat motifs

(the most significant was ANKRD32, P = 1.1×10-17), which
are typically sites of protein-protein interactions. Further-
more, some of these ankyrin-repeat-motif genes contained
SOCS box (suppressor of cytokine signaling) domains as

well (ASB14, P = 1.2×10-2 and ASB18, P = 8.8×10-3)
and are involved in protein turnover regulation [59]. In
addition, a number of chemokine receptors, CCR4 (P =
1.1×10-7), CCR5 (P = 7.2×10-5), and CCR10 (P =
1.0×10-19), as well as CCRL1 (P = 4.2×10-9), showed
evidence of positive selection in our analysis. These G-
protein coupled receptors bind specific cytokines (chemo-
kines), are involved in chemokine-mediated signaling, and
are generally pro-inflammatory/immune responsive [60].
We found evidence for significant positive selection in
DMRT2 (P = 4.2×10-4). DMRTs have been found to
associate with sexual determination and development (see
earlier section on Temperature-Dependent Sex Determina-
tion (TSD) genes, also reviewed in [61]).
Related to oxidative phosphorylation and free-radical

scavenging, several positively selected genes were involved
directly (for example, ATP5S, P = 3.7×10-6; ATP5H, P =
3.1×10-4; COX15, P = 1.4×10-4; ATP5G3, P = 1.4×10-3;
COX7A2, P = 6.0×10-3; ATP5B, P = 1.9×10-2; DAP3, P =
8.3×10-6) or indirectly (for example, SOD1, P = 1.5×10-7;
ACO2, P = 1.4×10-2) in this process. Adaptations within
genes in the process of ATP formation (specifically those
that are subunits of ATP synthase) and anti-oxidant
defenses have been proposed as mechanisms of life-history
evolution in reptiles [62]. Several additional genes involved
in life history traits were also under positive selection,
including those involved in fertility (FSHB, P = 7.4×10-6),

0 2 4 6 8

Figure 6 Gene families showing expansion in the western painted turtle lineage. The number of genes within a family is provided in front
of each bar. Gene families associated with the immune response are shown in red.
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reproduction/immune functionality (prolactin receptor,
P = 4.4×10-8), and aging (SIRT3, P = 2.1×10-3; CLK1, P =
1.1×10-2). In general, these 671 positively selected genes
are involved in diverse functions that span biological pro-
cesses. Although a numerically large set, our careful filter-
ing and criteria for ortholog consideration suggests they
are a robust set that is larger than would be expected
when compared to naked mole rat or human [42,63].
We detected 171 GO functional categories showing

enrichment for genes under positive selection (nominal
P values < 0.05, Mann-Whitney U-test), however, none
were statistically significant after multiple testing correc-
tion (see Accessory Data File 1 for an overview of genes
under positive selection and GO category enrichments).

Conclusions
The western painted turtle, and chelonians generally,
comprise a unique combination of extremely conserva-
tive evolutionary history interspersed with some of the
most unique physiological and behavioral adaptations
found in amniotes. Our analyses of the western painted
turtle genome indicate that common vertebrate regula-
tory pathways are often involved with these novel phe-
notypes, and additional functional experiments can now
investigate the ways in which these pathways have been
modified in turtles. Our extensive analyses of anoxia tol-
erance provides particularly strong support for the inter-
pretation that the western painted turtle utilizes
common vertebrate pathways to achieve its extraordin-
ary physiological abilities; temperature-dependent sex
determination and immune system functionality also
appear to utilize common suites of vertebrate genes.
Genomic analyses of longevity and particularly tooth
loss, both of which characterize all living chelonians,
suggest that patterns of gene loss are also key elements
of turtle evolutionary novelties. The western painted
turtle genome, enabled by both comparative genomics
and functional experimentation, has provided and will
continue to provide windows into the evolution of phy-
siological novelties, perhaps including some with biome-
dical and cryopreservation applications.
One aspect of turtle evolution that is proceeding at a

rapid and accelerating pace is human-mediated extinc-
tion. Although the lineages represented by living turtles
have survived countless challenges in the last 210 million
years, current estimates are that at least 50% of the 330
recognized species of living chelonians are threatened
with extinction [64]. Turtles far outstrip amphibians,
mammals, and birds in their proportion of at-risk species,
and the survival likelihood of many species is bleak.
Future comparative genomics work on turtles, including
comparisons among species that vary in their longevity,
anoxia and freeze tolerances, immunocompetency, and a
host of other key human challenges, requires healthy

populations of the remaining diversity of turtles. The
challenge, for comparative biology and conservation
alike, is to preserve the remaining diversity of living tur-
tles as we continue to unravel their secrets for success.

Materials and methods
Sequencing and assembly
A single C. p. belli (western painted turtle) was sequenced
at The Genome Center, Washington University School of
Medicine, St Louis, Missouri. The whole genome shotgun
library primary donor-derived reads (B. Shaffer lab, female,
field number: RCT428, locality: WA Grant Co, small lake
1.3 miles south of Potholes Reservoir, tissue accession
number: HBS 112648) and BAC end reads (BAC library
source: VMRC CHY3: J. Froula, JGI (from C. Amemiya
lab) female, strain: MVZ #238119, Locality: Frenchman
Hills wasteway 9.0 mi S via Dodson road of junction with
Hwy I-90, Grant Co., Washington) were assembled using
Roche’s Newbler (version 2.6) with stringent parameters.
Newbler uses all of the input single and paired end read
data (including the paired BAC end data) to create contigs
and then, focusing on the paired end read data along with
estimates of insert size, organizes those contigs into larger
scaffolds. After removing contamination, the resulting
assembly was labeled as 3.0.1. All scaffolds >500 bases
(81,642 scaffolds with a total size of 2.59 Gb, N50 scaffold
size of 3.01 Mb (N50 number is 248)) were retained for
submission to the public databases.
After the assembly was complete, 15X of paired end

sequencing data were generated on the Illumina platform
and used only for error correction in the reference assem-
bly; the Illumina paired end data were not used to aid in
scaffolding of existing contigs. For error correction, the
Illumina data were aligned against the 3.0.1 assembly
using bwa [65] and processed using samtools and bcftools
[66]. Based on the paired end mapping data, all duplicate
mapped reads were removed. One and two basepair indels
were introduced into the reference for all cases where
there were ≥3 and ≤200 reads aligned (mapping quality
≥40 and the indel was ≥10 bases from the end of the align-
ment), and where all reads disagreed with the reference
and agreed with one another. There were a total of 27,296
indels introduced into 24,712 contigs.
The assembly data were aligned utilizing BLASTZ [67]

to align and score non-repetitive turtle regions against the
following repeat-masked genomes: anole (anoCar2),
human (hg19), chicken (galGal3), and opossum (mon-
Dom5). Alignment chains differentiated between ortholo-
gous and paralogous alignments [68] and only ‘reciprocal
best’ alignments were retained in the alignment set. The
alignments were post-filtered in the following ways: (1)
only alignments that extended over at least 2,000 bases
where the relative expansion/contraction was <10X were
retained; and (2) alignments were then smoothed by
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removing any single alignments that were <10 kb and
occurred as a single alignment in between a large block of
separate alignments to the same chromosome. The relative
scaffold ordering was then examined in the four pairwise
alignments. If at least three of the different pairwise align-
ments with the other species all suggested a given order
and orientation, that pairwise ordering was retained in a
list of valid orders (and orientations). Then the consistent
pairwise alignments were linked into groups. The AGP
was created using those lists of ordered and oriented scaf-
folds. Because ordering by homology is not absolutely con-
fident, the gaps between scaffolds were annotated as
‘contig’ gaps including a ‘no’ in the final column indicating
that there is no spanning clone closing the gap. There was
approximately 1.2 Gb of sequence organized into 290
ordered groups leaving 80,697 individual scaffolds totaling
1.3 Gb. The N50 scaffold size rose to 5.2 Mb (N50 number
is 148).

Assembly quality and coverage assessments
As indicated by comparisons of the submitted assembly
with a set of 64 finished western painted turtle BACs
(BAC library source: VMRC CHY3; J. Froula JGI (from
C. Amemiya, Benaroya Research Institute, Seattle, WA)
Female; Strain MVZ #238119; Locality: WA: Grant Co:
small lake 1.3 miles south of potholes reservoir) totaling
9.3 Mb of finished sequence, structural accuracy of the
assembled sequence is sufficient for these analyses. These
completed BAC sequences were not included in the
assembly and thus provide an important dataset for
assessing assembly accuracy and coverage. Some small
supercontigs (most <5 kb) were not positioned within
larger supercontigs (<1 event per 500 kb). While these
are not strictly errors, they do affect overall assembly sta-
tistics. There are also small, undetected overlaps (most
<1 kb) between consecutive contigs (approximately 1
event per 30 kb), occasional local mis-ordering of small
contigs (approximately 1 event per Mb), and small con-
tigs incorrectly inserted within larger supercontigs (<1
event per 275 kb). Overall, the rate of rearrangements
with respect to finished BACs was comparable to pre-
vious next generation WGS assemblies. Nucleotide-level
accuracy is high by several measures. Over 99% of the
consensus bases in the western painted turtle sequence
have quality scores [69] of at least Q40 corresponding to
an error rate of ≤10-4. Comparison of the WGS sequence
to the 9.3 Mb of finished BACs from the sequenced indi-
vidual is consistent with this estimate, giving a high qual-
ity discrepancy rate of 3x10-3 substitutions and 2x10-4

indels which is no more than expected given the hetero-
zygosity rate. The rate of substitutions is due to the poly-
morphism rate. By restricting analysis to high-quality
bases, the nucleotide-level accuracy of the WGS assembly
is sufficient for analyses presented here. As with the

chimpanzee and other whole genome shotgun-based
assemblies, the most problematic regions are those con-
taining segmental duplications (Chimpanzee Sequencing
and Analysis Consortium, 2005).
We estimate that western painted turtle genome

sequence covers at least 93% of the full genome sequence.
To obtain this estimate, we first evaluated the coverage
using the results of the alignments of the assembly against
the 64 finished western painted turtle BACs. The overall
coverage of those BACs exceeded 93%. Second, we aligned
a set of western painted turtle cDNAs generated by this
project against the genome assembly using BLAT [70].
The cDNA libraries were constructed from several tissue
sources (see Additional file 1, Table S2) and were
sequenced in our lab on the 454 Life Sciences instrument
using methods previously reported [71]. The reads were
assembled using the Newbler software package provided
by 454 Life Sciences. The coverage estimates per tissue
range from 93% to 98% when asking that at least 50% of
the EST align to the genome or from 91% to 96% when
requiring more than 90% of the EST aligns to the genome
(see Additional file 1, Table S2).
Finally, we estimated coverage by looking at the cover-

age of a related genome using BLAT [70]. Over 96% of the
draft assembly of the 1.5 Gb Trachemys scripta genome
(separated by approximately 10-15 My from the western
painted turtle) aligned with the western painted turtle
genome.

Repeat structure
TE sequence divergence in three turtle genome assemblies
reveal a distribution that contrasts with the high turnover
of younger L1s in the lizard (Anolis), the skewed accumu-
lation of older TEs in the alligator, and near complete lack
of SINEs and active CR1s in the small, homogenous gen-
omes of birds (see Additional file 1, Figures S1-S5)
[9,11,72]. The average G+C content of C. p. bellii mobile
elements is the same as the genome-wide average of 43%
and the range of values for TE content and G+C among
the N50 scaffolds is more similar to those observed in
chicken than in Anolis (see Additional file 2, Figure S6)
[9], consistent with its closer phylogenetic relationships to
archosaurs.
Identification and classification of repetitive elements

in the C. p. bellii assembly were carried out on the full
original C. p. bellii assembly sequence (C. picta bellii
v3.0.1) using the RepeatMasker version 3.3.0 [8], Tandem
Repeat Finder version 4.0.4 [73], and Phobos version
3.3.12 [74] software packages. For all available genome
assemblies investigated RepeatMasker was run with the
BLAST engine and repeat classification was carried out
using the Vertebrate library from version 20110920 of
the RepBase database. We employed Phobos using
default parameters. Tandem Repeat Finder was run with
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the default alignment parameters except for a reduced
MaxPeriod value of 200 instead of the default 500, and
with exclusion of HTML output. These parameter set-
tings were directly comparable to summary statistics
available through TRDB for the most recent whole-
genome assemblies of amniote species. Results from
RepeatMasker were analyzed using RMPipeline [75], a set
of generalized programs for analyzing RepeatMasker out-
put written using Perl. These programs can be used to
process any RepeatMasker output files and are publicly
available and free to use under the GPLv3 license. Graphs
were created using RMPipeline results, some additional
Perl scripts, and Microsoft Excel.

Isochores
The absolute GC content of the assembly (after removing
scaffolds with >20% missing data) is 0.434. We examined
whether the assembly exhibited any bias in GC content.
We divided the assembly into four equally-sized bins of
increasing scaffold size (after omitting scaffolds with
>20% missing data). The absolute GC contents of each
bin were (range of scaffold lengths are indicated in bp):
0.496 (501-591), 0.498 (591-735), 0.496 (735-1,039),
0.433 (1,039-26,452,378). Because it appears there is a
bias for smaller scaffolds to have a larger GC proportion,
we focused our analyses of genomic GC content to those
>320 kb, a subset of the genome whose absolute GC is
0.430, a value very close to the whole-genome absolute
GC. To generate the distributions of GC content, we
divided up the genomes of human, dog, frog, turkey, zeb-
rafinch, chicken, and western painted turtle (scaffolds
>320 kb) into 3-kb windows, using the GC content of
these windows as measures (see Additional file 2, Figure
S7). We also examined GC variation at different spatial
scales, using non-overlapping windows of 5, 20, 80, and
320 kb (Figure 1). As window size quadruples, standard
deviation should decrease by 50% for a completely homo-
geneous genome [76]. To determine the relationship
between GC3 and flanking sequence, we used 10 kb
upstream of the start codon and 10 kb downstream of
the stop codon as the 20-kb flanking sequence. Only
those flanking sequence with 80% complete data (allow-
ing 20% combined missing data or clipped ends due to
proximity of the gene to the ends of the scaffold) were
considered. To examine the relationship between gene
density and GC content, we divided up intergenic
sequences into 10 equal-sized bins of increasing size and
calculated the GC content of each bin. For the western
painted turtle, we found a weak but significant correla-
tion between the GC content of protein-coding genes
and their flanking sequence, indicating that genomic
environment influences the nucleotide composition of
genes (see Additional file 2, Figure S8).

Multiple alignments and gene orthologs
Comparative genomic analyses (including studies of
phylogenetic relationships, selection, conserved ele-
ments, and accelerated regions) are prone to artifacts
derived from biases introduced by differences in gene
prediction methods used in draft genome annotations of
individual genomes included in the study, as well as
gene prediction errors. In order to avoid having such
biases dominate analyses, one can chose a well-anno-
tated reference genome (in our case, human or chicken,
whichever is more appropriate for a particular analysis),
and annotations are remapped from the reference to the
target genomes through multiple alignment. This step is
followed by extensive checks to ensure the quality of
derived annotations in target genomes.
A disadvantage of this approach is that novel elements

introduced in non-reference genomes are not covered by
the analysis. In case of human-referenced orthologs, the
analysis only includes genes preserved throughout amniote
evolution (since mammals are the sister groups of the
remaining amniotes), while in the case of chicken-refer-
enced orthologs, we analyze genome elements preserved
during the evolutionary diversification of turtles and arch-
osaurs (see Figure 2). Thus, reference derived ortholog
sets are best used in analyses requiring conservative high-
confidence gene sets, and are not suitable for estimating
target genome characteristics, such as numbers of genes,
exons, or novel elements.
To construct a set of high-confidence orthologs, we

used a methodology developed by Kosiol and colleagues
[58]. First, we created a multiple alignment of human
(hg19), platypus (ornAna1), chicken (galGal3), zebrafinch
(ornAna1), anole (anoCar2), turtle, python, and alligator,
using a standard UCSC genome browser pipeline [77]
based on BLASTZ [67] and multiz [78]. We based ortho-
log predictions on the human gene catalog of 21,360
genes (including RefSeq, UCSC known genes, ENSEMBL,
and VEGA genes), which were remapped to all of the
above species through these multiple alignments. We
observed high variability for positions of translation start
sites and stop codons, thus we also evaluated incomplete
gene models, where we removed 10% on each end of the
gene. Altogether, our gene set contained more than
378,000 alternative gene models.
Series of filters were run to identify which of these gene

models can be considered high-confidence orthologs. For
a gene model to be considered clean in a particular gen-
ome, we required that: (1) it was covered by a single
chain within the syntenic (for platypus and chicken) or
reciprocal-best (for zebrafinch, anole, turtle, python, and
alligator) net created using the UCSC genome browser
pipeline; (2) there were no significant gaps in the gene
alignments; (3) there were no frameshifts uncorrected
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within a short window of sequence; and (4) all elements
important for the gene structure (donor sites, acceptor
sites, translations start sites, and stop codons) were pre-
served. For each gene, we selected a single gene model
that was clean in turtle, giving preference to the models
that were clean in the most species and were the longest.
The gene was excluded if it did not have any gene model
satisfying these conditions (see Additional file 1, Table
S6, which shows the number of genes filtered out in each
step.) This approach resulted in 4,786 high-confidence
orthologs, out of which 3,318 are incomplete (shifted
start codon or stop codon). Out of these genes, 312 cov-
ered two species (human and turtle), 622 covered three
species, 757 covered four species, 896 covered five spe-
cies, 1,048 covered six species, 842 covered seven species,
and 309 covered all eight species. An additional 12 genes
that were incompletely covered in the reference genome
were detected in the last stages of comparison and
removed in postprocessing.

Phylogeny and substitution rate
We estimated phylogeny using the set of 1,955 orthologs
that we identified in at least five of the eight genomes that
we examined and that had the potential to be informative
about the phylogenetic position of turtles. We partitioned
the dataset by codon position, using an independent GTR
model for each position and allowing for gamma-distribu-
ted rate variation among sites. We ran four independent
analyses for 10 million generations, sampling every 1,000
generations in MrBayes v. 3.1.2 [79]. We then estimated
the relative rate of substitution in a smaller dataset that
was designed to minimize missing data. This dataset com-
prised 309 orthologs that were identified in all eight spe-
cies. We used a UCLN relaxed clock model implemented
in BEAST v. 1.7.1 [80]. We partitioned the dataset by
codon position, using independent general time reversible
models of DNA substitution allowing gamma distributed
rate variation for each position. We set the log normal dis-
tribution describing among-branch substitution rate varia-
tion to mean 1.0 and standard deviation of 0.33 and
estimated relative substitution rates on the topology
shown in Figure 2. We carried out three replicate runs,
ensuring convergence and adequate mixing by inspecting
samples from the MCMC in Tracer [81]. Each analysis
was run for 10 million generations and sampled every
1,000 generations. Rates varied by a factor of approxi-
mately 5, ranging from the lowest relative rate of 0.33 (in
turtle) to a high of 1.67 (in python; see Additional file 1,
Table S5).

Anoxic gene expression
To better understand the transcriptomic changes that
might underlie the profound anoxia tolerance of the
western painted turtle, differential gene expression was

investigated in telencephalon and ventricle from western
painted turtles that were either normoxic or submerged
in anoxic water 24 h at 19°C (n = 4 per group, 8 total;
mean ± SD 238.6 ± 23 g, range, 198-274 g) using RNA-
seq methodology. At the end of the submergence per-
iod, the turtles, which appeared sedated due to profound
metabolic depression, were removed from the chamber
and quickly euthanized. The telencephalon was removed
from the braincase, stripped of any adherent meninges,
and flash-frozen in freeze-clamps previously cooled in
liquid nitrogen. A 2 × 4 cm window was quickly cut in
the plastron with a bone saw, exposing the still-beating
heart, which was quickly removed, bisected, blotted on
gauze to remove any blood, and quickly flash-frozen.
Water was considered anoxic when oxygen concentra-
tions were undetectable with a submerged oxygen elec-
trode (YSI D200) while bubbling the water with
nitrogen gas. Frozen tissue samples (22-109 mg) were
ground to a fine powder under liquid nitrogen with a
mortar and pestle and transferred to a dry-ice cooled
test tube with a liquid nitrogen-cooled spatula. One
milliliter of room-temperature Trizol® reagent (Life
Technologies) per 50-100 mg tissue was added to the
tube, which was immediately vortexed. All subsequent
RNA isolation steps were performed according to the
Trizol manufacturer’s instructions. The final RNA pellet
was resuspended in DEPC-treated water and treated
with DNAse I (Life Technologies) according the manu-
facturer’s instructions in order to remove any DNA con-
tamination. RIN values for the samples were all >7.4
(Agilent 2100 Bioanalyzer). cDNA library construction
and sequencing was carried out using previously
described method [11,82].
Paired-end 2x100 bp reads generated from poly(A)

selected RNA-seq libraries from all 16 samples were
aligned to the latest C. p. bellii assembled reference
sequence, using TopHat 1.4.0 [83], which also splits reads
to align them across known and novel splice junctions.
For known splice junction loci, a GTF (Gene Transfer For-
mat) file of OPTIC annotations was provided. To estimate
transcript and gene abundances, Cufflinks 1.3.0 [84] was
used. This generates normalized FPKMs (Fragments per
kilobase of exon model per million mapped fragments) for
each annotated gene and transcript as defined in the
OPTIC based annotations. The Cufflinks parameter -G
was used to exclude novel isoforms, in order to exclude
large outliers (regions with extraordinarily high read-
depths) that causes the Cufflinks normalization method to
introduce a loss of sensitivity. The per-gene FPKMs were
log2 transformed and compared across treatments and tis-
sues by ANOVA assuming a normal/Gaussian distribution
[85] with FPR multiple testing correction using JMP
Genomics 5.1. Genes were excluded from the analysis if
the median FPKM equaled zero for three out of the four
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sampling groups. The results of genes showing greater
than two-fold increases are shown in Additional file 1,
Tables S7, S8; down-regulated genes are shown in Addi-
tional file 1, Table S9; and RNA-seq read depths for the
most highly up and down-regulated genes are shown in
Additional file 2, Figures S10-S12.

Freeze tolerance
The Mfold (v.2.3) computer program was used to pre-
dict RNA structure [86]. The program predicts second-
ary structure based on the energy minimization method
and thermodynamic parameters. We initially searched
the C. p. bellii assembly (v.3.0.1) for the sequence of
premiR-29b using BLAST+ (v.2.2.18) [87]. We focus on
this micro-RNA because, in conjunction with ongoing
experiments (Storey, unpublished results), we found that
miR-29b increases in expression levels for many models
of metabolic rate depression (hibernating mammals,
freeze tolerance, and anoxia tolerance). This is most
likely due to its proposed role in regulating the PI3K/
Akt signaling pathway, a pathway that is commonly dif-
ferentially regulated in response to environmental stress
and has been shown to control glucose metabolism and
transport, survival (apoptosis), translation processes and
cell cycle arrest. This microRNA continually proves to
be a utilized regulatory response to severe environmen-
tal stresses. Small RNAs, including miRNAs, were iso-
lated using the mirVana miRNA isolation kit from
Ambion Inc. (P/N: 1560) according to the manufac-
turer’s protocol. Samples (approximately 100 mg) were
homogenized 1:10 w:v in lysis/binding buffer, left on ice
for 10 min and then a mixture of acid phenol:chloroform
was added in a 1:1 ratio. Samples were centrifuged for
5 min at 10,000 ×g and the supernatant was collected.
Small miRNAs (<200 nt) were isolated using the enrich-
ment protocol provided with the kit involving two sequen-
tial filtrations through glass-fiber filters at different ethanol
concentrations. RNA concentration was determined by
absorbance at 260 nm and the ratio of absorbance at 260/
280 nm was used as an indicator of RNA purity.
To determine the expression of mature miR-29b from

C. p. bellii, a modified v miRNA-specific reverse tran-
scription and qRT-PCR procedure was performed. A
5.0 µL aliquot of small RNA (0.2 ng/µL) was incubated
with 1µL of 250 nM microRNA-specific stem-loop pri-
mer (5’-CTCACAGTACGTTGGTAT CCTTGTGATG
TTCGATGCCATATTGTACTGTGAGAACACTGA-3’).
The reaction was heated at 95°C for 5 min to denature
the RNA, and then incubated for 5 min at 60°C to anneal
the stem loop primer. After cooling on ice for 1 min, the
remaining reagents (4 µL of 5x first strand buffer, 2 µL of
0.1 M DTT, 1 µL of dNTP mixture containing 25 mM of
each nucleotide, and 1 µL of M-MLV reverse transcrip-
tase) were added. The reaction proceeded for 30 min at

16°C, followed by 30 min at 42°C, and 85°C for 5 min.
Following reverse transcription, the RT product was
stored at -20°C. Real-time PCR was performed on a
BioRad MyiQ2 Detection System (P/N: 170-9790,
BioRad). The 25 µL qRT-PCR reaction included 5 µL RT
product, 12.5 µL SsoFast EvaGreen Supermix (P/N: 172-
5201, BioRad), 0.5 µL of 12.5 µM forward primer (5’-
ACACTCCAGCTGGGTAGCACCATTTGAAATC-3’),
0.5 µL of 12.5 µM reverse primer (5’-CTCACAG-
TACGTTGGTATCCTTGTG-3’), and 6.5 µL nuclease
free water. Reactions were incubated in a 96-well plate at
95°C for 3 min, followed by 40 cycles of 95°C for 15 s
and 60°C for 1 min. A melting curve analysis was per-
formed for each miRNA analyzed. All reactions were run
in triplicate.

Tooth loss
We initially searched the C. p. bellii scaffolds for individual
exons of ENAM, AMEL, AMBN, DSPP, and MMP20 using
BLAST+ (v. 2.2.18) [87]. We used crocodilian sequences
for AMEL - AF095568, AMBN - AY043290, and ENAM -
GU344683.1, MMP20 - DQ885891.1 and human
sequences for DSPP - NM_014208 and part of MMP20-
NM_004771.3. We were able to identify from one to sev-
eral conserved exons from the C. p. bellii pseudogenes,
thus providing us with an anchor point for further analy-
sis. Subsequently, we utilized UniDPlot, which is a tool for
the detection of poorly conserved DNA regions and was
previously used to find pseudogenes in chicken [41,88].
Finally, we utilized T-coffee to align homologous exons
and manual curation to identify GT-AG exon-intron junc-
tions. Identity scores were calculated using LALIGN [89].
Gene positions within chromosomally syntenic regions
were analyzed using lizard (A. carolinensis genome assem-
bly 2.0), chicken (Gallus gallus genome assembly 4.0), and
the UCSC Human Genome Browser.

Aging and longevity
We obtained the individual exon sequences for all five
shelterin complex encoding genes and for the genes in
HAGR, from NCBI. We then searched all C. p. bellii
sequence and RNA-seq data to identify orthologs of indivi-
dual exons of these genes using BLAST+ (v. 2.2.18) [87].
We used either chicken or anole (lizard) sequences as the
query sequence. While TEP1, TERF2IP, and ATP5O were
completely absent from C. p. bellii genome, partial frag-
mented forms of the other genes were found. To avoid
draft assembly artifacts, we confirmed our results by carry-
ing out similar searches for these genes in all four turtle
genome available to us (See Additional file 1, Table S12).

Sex determination/differentiation
454 reads (generated by us) from the transcriptomes of
C. p. bellii, Chelydra serpentina, Apalone mutica, and
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Podocnemis expansa were combined and mapped to C.
p. bellii assembly 3.0.1 using GMAP [90]. The resulting
SAM file was then run through Cufflinks 1.3.0 [91] to
obtain a GTF file containing a single list of putative
genes in the western painted turtle genome. This GTF
file was used in CuffLinks as the reference GTF for sub-
sequent CuffLinks runs on each 454 dataset. cDNA
sequences per tissue and species were extracted using R
and the bioconductor package ShortRead from this
reference GTF file. Each transcriptome 454 dataset was
mapped to the C. p. bellii assembly 3.0.1 using GMAP.
DNA coding sequences from the genomes or transcrip-

tomes of multiple vertebrates of 34 genes in the sex deter-
mination/differentiation network of vertebrates or linked
to sex chromosomes in chicken (see Additional file 1,
Table S13) were extracted and aligned using CLUSTALW
in Geneious Pro [92] and artificial frameshifts and other
errors were manually corrected. Rates of molecular evolu-
tion were evaluated by calculating dN, dS, and dN/dS per
gene in MEGA5 [93]. Tests of neutrality, positive and pur-
ifying selection were carried out in MEGA5 using the
codon-based Z-test, using the Nei-Gojobori method [94],
where the variance of the difference was computed using
the bootstrap method with 500 replicates. Optimal models
of DNA evolution were inferred per gene and gene-speci-
fic phylogenetic trees were built by maximum likelihood
with MEGA5, and topologies contrasted among genes
with the species phylogenetic relationships.

Immune system
A unique sequence database was generated from Ensembl
[95] consisting of approximately 3,000 immune genes
from human (Homo sapiens, GRCh37), mouse (Mus mus-
culus, NCBIM37), rat (Rattus norvegicus, RGSC3.4),
chicken (Gallus gallus, WASHUC2), Fugu (Takifugu
rubripes, FUGU4), Medaka (Oryzias latipes, MEDAKA1),
Anole (Anolis carolinensis, AnoCar2.0), Stickleback (Gas-
terosteus aculeatus, BROADS1), Turkey (Meleagris gallo-
pavo, UMD2), Xenopus (Xenopus tropicalis, JGI_4.2),
Tetraodon (Tetraodon nigroviridis, TETRAODON8), Zeb-
rafinch (Taeniopygia guttata, taeGut3.2.4), Zebrafish
(Danio rerio, Zv9), and Sea Lamprey (Petromyzon marinus,
Pmarinus_7.0). Sequences, Ensembl Gene ID, and Gene
Name were obtained from Ensembl directly or using the
Biomart mining utility [96] when available. Pairwise align-
ments were obtained using in-house BLAST (BLASTN
2.2.15) [97] comparing query immune gene sequences to
the C. p. bellii genome assembly and unassembled sequen-
cing reads, gene predictions, and cDNA reads.

Identification of gene family expansion/contraction
To identify gene family expansions and contractions, we
built phylogenetic trees for all predicted genes in C. p.
bellii with their orthologs in human, mouse, platypus,

chicken, zebrafinch, green anole and using the pufferfish
and zebrafish as outgroups.
Orthology assignments and orthologous groups were

defined using the OPTIC pipeline [10,98]. Orthology
assignments are based upon the computation of pairwise
orthologs using PhyOP [99] using BLASTP searches
with an E-value threshold of 10-5 and a minimum size
cut-off equal to 75% of the smaller sequence. The align-
ments were weighted according to the normalized bit
score:

sij = 1 - ((max[s’ij,s’ji])/min(s’ij,sji).

Where s’ij is the bit score for a BLASTP alignment
between sequence i and j.
A tree-based orthology method implemented within

PhyOP [99] was used to define clusters of orthologous
groups. For each cluster, genes were aligned using MUS-
CLE [100], genes with multiple transcripts were col-
lapsed into sequences of non-redundant exons and
phylogenetic trees were estimated using TreeBeST [101].
Rates of non-synonymous substitutions per non-synon-
ymous sites (dN) and rates of synonymous substitutions
per synonymous sites (dS) and their ratio (dN/dS) were
estimated for each branch of the tree with PAML [102].
Rates were not allowed to vary between sites. To
remove biases associated with poor alignments, trans-
lated sequences were masked with SEG [103] and corre-
sponding masked codons were removed; poorly aligned
columns were also removed using Gblocks [104].
A total of 20,234 orthologous groups were found, of

which 12,938 have at least one gene prediction from C. p.
bellii and 1,176 groups contain at least two C. p. bellii
gene models. All orthology/paralogy predictions are
available at [105]. We identified a total of 4,828 genes
with one-to-one orthologous relationship between all
amniotes, and 3,222 between all species when pufferfish
and zebrafish are included. A total of 604 predicted gene
models in C. p. bellii had no predicted orthologs; these
include rapidly-evolving genes as well as problematic
gene models that survived our filters. We also identified
568 groups with genes in human, mouse, platypus,
chicken, zebrafinch, and green anole but that have no
detectable orthologs in the current version of the C. p.
bellii genome assembly. These currently absent genes
will contain genes absent from the current assembly, as
well as rapidly-evolving genes.
In order to reach a conservative estimate of the num-

ber of genes within a family and to remove any residual
biases associated with the assembly process, we esti-
mated the pairwise amino acid identity between every
pair of members of a family and rejected duplicated
genes that are more than 97% identical. A summary of
gene expansions is presented in Figure 6.
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Beta-keratin expansions
Beta keratins have previously been described to be an
important component of the corneous layers of the repti-
lian epidermis forming the scales, claws, and beak. In
birds, they are the major component of feathers [106]. We
identified a total of 106 gene models (101 complete) in
C. p. bellii that share significant sequence similarity with
avian and green anole beta-keratins. Using beta-keratin
mRNAs extracted from the precursor cells of the shell of
Pseudemys nelsoni [56], and the phylogeny built with
PhyML [107], we identified 41 and 60 putative non-shell
and shell proteins in C. p. bellii, respectively.

Expansion of gene families involved in the immune
response
Among the families with the largest expansions (≥4
members), 15 are related to the innate or adaptive
immune response.
As part of the adaptive immune response, we identified

365, 131, and 94 predicted gene models in C. p. bellii that
cluster with the immunoglobulin heavy chain, lambda, and
kappa chain variable regions respectively in mouse. The
large number of genes from these two families is of prime
importance in the generation of antibody diversity through
V(D)J recombination. Both the immunoglobulin heavy and
light chain variable regions are known to be among the
most dynamic gene regions in the human genome, and
immunoglobulin genes are known to show high allelic and
copy number variation [108,109]. Interestingly the imuno-
globulin kappa chains have been lost in the bird genomes
[110]. These authors predicted this loss to predate
the divergence between Passeriformes and Galliformes
(100 Mya). In agreement with this, our analysis shows that
the immunoglobulin kappa chains were present in the
common ancestor of the birds and turtles approximately
260 million years ago.
We also identified expansions of several gene families

that form part of the innate immune system. These gene
products are expressed on the surface of natural killer
(NK) cells (NK cells’ C-type lectin-like and NK cells’
immunoglobulin-like receptors) or are secreted by these
NK cells (for example, granzymes). NK receptors pre-
viously shown to belong to the LCR in human, mouse and
chicken are known to have undergone lineage-specific
expansion in each of these lineages [111-114]. We
searched the C. p. bellii polypeptide predictions belonging
to these two families for transmembrane domains [115]
and found that only six of 27 putative NK cells’ C-type lec-
tin-like and 14 of 35 putative NK cells’ immunoglobulin-
like receptors possess transmembrane domains.

Ortholog sets
We based our study of positive selection on the set of
carefully screened orthologs for eight vertebrate species

(human, platypus, chicken, zebrafinch, anole, turtle,
python, and alligator; see Materials and Methods, Multi-
ple Alignments and Gene Orthologs). From among 4,786
high-confidence ortholog sets, each covering between
two and eight species, we selected 4,136 sets that cov-
ered human, turtle, and at least one of the outgroup
genomes (chicken, alligator, zebrafinch).

Positive selection
We detected signs of positive selection using likelihood
ratio tests [57] with reduced parameterization [58].
P values were estimated assuming a null distribution
that is a 50:50 mixture of c2 distribution with one
degree of freedom, and a point mass at zero, leading to
conservative P value estimates [116]. The branch leading
to the turtle was designated as a forward branch, with
some sites allowing dN/dS>1, while all other branches
were background branches, disallowing positive selec-
tion. The results were corrected for multiple testing
using Benjamini and Hochberg false discovery rate con-
trol (FDR). Accessory Data File 1 shows the results of
likelihood-ratio tests for all genes with nominal P values
<0.05 (890 genes), indicating genes with FDR <0.1 (671
genes).
We also examined GO functional categories for

enrichment for genes under positive selection, using
Mann-Whitney U-test with Holm’s correction for multi-
ple testing [117]. No functional categories were statisti-
cally significantly enriched for genes under positive
selection after multiple testing correction. Accessory
Data File 1 shows 171 GO categories with nominal
P values <0.05.

Author information
The Chrysemys picta bellii whole-genome shotgun project
has been deposited in NCBI GenBank under the project
accession AHGY00000000. The raw input data for Chrys-
emys picta bellii (BioProject ID: 78657) was deposited to
the trace archive and the SRA under the project accession
SRP012057. The Apalone spinifera whole genome data
can be found at the NCBI SRA under the accession num-
bers SRX217616-7. Specimen collection for the C. picta
bellii was authorized by the Washington Department of
Fish and Wildlife under scientific collecting permit 08-086
(to RCT) and complied with IACUC standards at UC
Davis (HBS protocol holder). Ethical (IACUC) approvals
for all experiments involving living turtles were obtained
at the university where the experiment or field work were
conducted.

Description of additional files
We provide three Additional Files. Two Additional Files
are in Microsoft word (.docx). Additional file 1 contains
Tables S1-S17), and Additional file 2 contains Figures
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S1-S12). We also provide Additional file 3 in support of
the selection scan analysis in Microsoft Excel format. In
it, the sheet labeled mwu_turtle_go details enrichment
of GO categories for positive selection on the western
painted turtle lineage with nominal P values < 0.05
(Mann-Whitney U-test). No categories were significantly
enriched for positive selection after application of multi-
ple testing correction. The second sheet, labeled lrt_tur-
tle, shows genes under positive selection on the western
painted turtle lineage. All genes with nominal P values
<0.05 (likelihood ratio branch-site test) are shown, and
the 671 genes that were statistically significant after
applying multiple testing correction (FDR <0.1) are also
noted.

Additional material

Additional file 1: Supplementary tables. Tables S1-S17 contain
additional information in support of the painted turtle assembly (Tables
S1-S2), transposable elements (Table S3), isochores (Table S4), phylogeny
and evolutionary rates (Tables S5-S6), anoxia (Tables S7-S9), tooth loss
(Tables S10-S11), longevity (Table S12), sex determination (Table S13),
immune function (Tables S14-S15), and gene family expansions (Tables
S16-S17).

Additional file 2: Supplementary figures. Figures S1-S12 contain
additional information in support of the painted turtle repeat analyses
(Figures S1-S6), isochores (Figures S7-S9), and anoxia tolerance (Figures
S10-12).

Additional file 3: Selection scan analysis. The sheet labeled
mwu_turtle_go provides additional information on the enrichment of
GO categories for positive selection on the western painted turtle, while
the sheet labeled lrt_turtle lists all genes under positive selection on the
western painted turtle lineage. All genes with nominal P values <0.05
(likelihood ratio branch-site test) are shown, and the 671 genes that
were statistically significant after applying multiple testing correction
(FDR <0.1) are also noted.
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