
Introduction
Type 2 diabetes is caused by defective insulin secretion in 
the presence of insulin resistance. It usually occurs in late 
adulthood and is associated with high body mass index 
(BMI). Genome-wide association studies (GWASs) have 
identifi ed more than 200 genetic variants associated with 
metabolic traits, including 65 loci associated with type 2 
diabetes (Figure  1) [1-17]. Th is number is increasing as 
larger meta-analyses of GWASs are performed. For most 
of the variants the precise gene involved and its biological 
role in type  2 diabetes is unknown. Nevertheless, some 
genetic variants have provided interesting insights into 
the links between metabolic traits and disease. We 
discuss several examples in this review (Table 1).

Genetic studies highlight the diff erences between 
glucose homeostasis in the general population and 
risk of type 2 diabetes
GWASs have identifi ed 36 variants associated with 
normal variation in fasting glucose levels [14,18,19]. We 
might have expected these variants to be associated with 
type  2 diabetes with eff ect sizes proportional to their 
eff ects on fasting glucose in the normal range, but this 
relationship is not clear. Several genetic variants have 
proportionally larger eff ects on fasting or stimulated 

glucose in the normal range compared with their eff ects 
on type  2 diabetes risk, and vice versa [14,17]. Th ree 
variants stand out: those in GCK, MTN1RB and G6PC2, 
which have the strongest eff ect on fasting glucose but no 
eff ect (G6PC2) or small eff ects (GCK and MTN1RB) on 
risk of type  2 diabetes (Figure  2). Arguably the most 
interest ing is the variant at G6PC2. Th is gene encodes 
glucose-6-phosphatase that functions in glucose trans-
port and sensing. Variants lying in the intronic region of 
this gene, but of no obvious function, are associated with 
fasting glucose and insulin secretion but not type  2 
diabetes. Th e allele associated with increased fasting 
glucose is also, paradoxically, associated with improved 
response to an oral glucose challenge [20]. In contrast, 
TCF7L2 is most strongly associated with type 2 diabetes, 
but has a relatively limited eff ect on fasting glucose in the 
normal range. Th ese fi ndings suggest that there are 
diff erences in the genes and mechanisms that infl uence 
normal physiological glucose levels compared with the 
beta cell dysfunction and pathophysiological glucose 
levels seen in type 2 diabetes.

Insights into the relationship between circadian 
rhythm and type 2 diabetes
Genetic studies have revealed that polymorphisms in the 
MTNR1B gene infl uence the risk of type 2 diabetes and 
glucose control in the non-diabetic population. MTNR1B 
encodes one of two distinct receptors through which 
melatonin exerts its eff ect [21]. Melatonin is a circulating 
hormone that regulates circadian rhythm. Th e MTNR1B 
receptor is expressed in human islets [22,23]. Increased 
nocturnal levels of melatonin coincide with decreased 
insulin levels. Th ere is evidence from animal studies that 
if the central and peripheral circadian rhythms, including 
the melatonin pathway, are disrupted, the risk of meta-
bolic disorders and type  2 diabetes is increased [24,25]. 
Th e association between MTNR1B genetic variation and 
glucose control appears to be driven by a primary eff ect 
on insulin secretion [23]. Th e variants in MTNR1B are 
also associated with alterations to MTNR1B gene expres-
sion in human islet samples - the type 2 diabetes risk and 
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glucose raising allele is associated with increased 
MTNR1B expression [23]. A large-scale exon sequencing 
study of the MTNR1B locus in more than 7,000 Euro-
peans revealed 36 very rare variants (minor allele fre-
quency <0.1%) associated with type 2 diabetes risk [26]. 

Four of these rare variants caused complete loss of 
melatonin binding and signaling capabilities [26]. It is not 
clear why rare reduced function mutations are associated 
with increased type 2 diabetes risk and a common allele 
that increases MTNR1B gene expression is also 

Figure 1. Sixty-five loci associated with type 2 diabetes. This figure illustrates effect size, risk mechanism and year of discovery for all 65 loci 
associated with type 2 diabetes [1-17]. The x axis gives the year that the association was discovered with robust (genome wide) significance. The 
y axis is the effect size (odds ratio) for type 2 diabetes association. Colors indicate possible disease mechanism. The odds ratios for type 2 diabetes 
were all obtained from the recent publication by the DIAbetes Genetics Replication and Meta-analysis (DIAGRAM) Consortium [1].
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Table 1. Evidence for links between diabetes and related metabolic traits from genetic studies

Primary trait Secondary trait Loci  Result Reference(s)

Fasting glucose in the  Type 2 diabetes GCK and MTN1RB Variants at these loci have the strongest effects on fasting [14,18,20]
normal range   glucose but relatively small effects on risk of type 2 diabetes

  G6PC2 Fasting glucose increasing allele is paradoxically associated 
   with improved response to an oral glucose challenge

Circadian rhythm Insulin secretion MTN1RB Variants in the melatonin receptor MTNR1B are associated  [2,23,26]
   with increased fasting glucose, impairment of insulin secretion  
   from the pancreatic beta cell, and increased risk of type 2 diabetes

Inflammatory marker Obesity and metabolic  CRP CRP has no causal effect on obesity and development of insulin [28,44]
CRP syndrome phenotypes  resistance and type 2 diabetes, suggesting inflammation is not 
   causally linked to obesity

BMI Circulating CRP FTO Obesity causally affects the circulating levels of CRP [28]

SHBG levels Type 2 diabetes  SHBG Raised circulating SHBG levels reduce the risk of type 2 diabetes [35,36]

Birth weight Type 2 diabetes CDKAL1, HHEX/IDE  Genetic variants that influence birth weight also influence type 2 [40-42]
  and ADCY5 diabetes risk

BMI, body mass index; CRP, C-reactive protein; SHBG, sex hormone binding globulin.
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asso ciated with increased risk. One suggestion is that the 
increased expression could be the result of the absence of 
negative feedback regulatory events under conditions of 
impaired melatonin receptor signaling [26].

Insights into the relationship between obesity, 
inflammation and diabetes
Genetic studies have provided important insights into 
the relationships between obesity, inflammation and 
diabetes. Obesity is associated with a multitude of adverse 
metabolic traits, including insulin resistance, non-alco-
holic fatty liver disease, hyperglycemia, hyper tension and 
dyslipidemia. One intriguing association is that between 
inflammation and obesity, but the causal direc tion is 
unknown. GWASs have identified genetic variants asso-
ciated with obesity, and variants associated with inflam-
mation. Variants in the FTO gene are associated with 
obesity and variants in the C-reactive protein (CRP) gene 
are associated with C-reactive protein (CRP) levels  - an 
inflammatory marker synthesized by the liver. FTO 

associates with multiple metabolic pheno types to the 
extent expected based on its association with BMI and 
the correlations between BMI and secondary metabolic 
phenotypes [27]. These asso ciations include FTO versus 
circulating CRP levels [28]. In contrast CRP genetic 
variants are not associated with obesity [28]. These 
findings suggest that inflammatory markers, particu larly 
CRP, do not causally influence the risk of obesity. This 
finding provides evidence that the sub clinical inflam ma-
tory profile associated with obesity is more likely to be 
secondary to adiposity rather than causal. The causal 
effect of obesity on inflammatory markers is likely to be 
driven by adipocytes that are a key expresser of inflam-
matory molecules [29-31].

Insights into the relationship between circulating 
sex hormone binding globulin levels and type 2 
diabetes
Recent genetic studies have highlighted a possible causal 
role for lower sex hormone binding globulin (SHBG) levels 

Figure 2. Plot of fasting blood glucose effects and type 2 diabetes odds ratios for the 16 strongest variants associated with fasting 
glucose levels. Data were obtained from published meta-analysis [14,17]. Red triangles represent genetic loci showing a GWAS-significant 
association with both fasting glucose and type 2 diabetes risk; blue circles represent loci associated with fasting glucose only. Effect sizes are 
aligned to the fasting glucose-increasing allele.
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and increased risk of type 2 diabetes. This evidence comes 
from studies of genetic variation in the SHBG gene.

SHBG, a plasma transport protein that is mainly pro-
duced by the liver, binds to sex hormones: estradiol, and 
with higher affinity to testosterone. It was assumed that 
SHBG plays one role only, which is regulation of free sex 
hormone bioavailability to target tissues. However, 
several physiologic roles have been suggested for SHBG 
through its multiple interactions with its receptor; these 
roles include modification of sex hormone uptake and 
cell proliferation [32-34]. The multiple interactions 
between SHBG and its receptors in various target tissues 
suggest that the role is more complex than the simple 
transport of sex hormones in serum.

A number of observational epidemiological studies 
have demonstrated associations between type 2 diabetes 
and androgens (primarily testosterone), estrogens (estra-
diol) and SHBG [34] that cannot be explained by 
adiposity. It is controversial whether SHBG is a cause or 
consequence of these conditions. The non-genetic evi-
dence that suggests reduced SHBG levels increase the 
risk of type  2 diabetes, and the evidence that points to 
reverse causation, are summarized in Table 2.

Two Mendelian randomization analyses, using genetic 
variants at the SHBG locus, have provided evidence that 
raised circulating SHBG levels reduce the risk of type 2 
diabetes [35,36]. In both studies, the effects of SHBG 
variants on risk of type  2 diabetes were consistent with 
those predicted by the effect of the SNPs on SHBG levels 
and the correlation between SHBG levels and type  2 
diabetes.

Insights into the relationship between birth weight 
and type 2 diabetes
Numerous epidemiological studies have shown that 
reduced birth weight is associated with impaired glucose 
tolerance and type 2 diabetes. There are two hypotheses 
proposed to explain the association between birth weight 
and type  2 diabetes. (a)  The fetal programming hypo-
thesis proposes that poor intra-uterine nutrition will not 
only cause small, thin babies, but also programs the 
development of risk factors of disease, such as type  2 
diabetes in adults [37,38]. (b) The fetal insulin hypothesis 
suggests that fetal genetics influencing insulin secretion 
and action have a direct effect on small, thin babies and 
their increased risk of type  2 diabetes [39]. Maternal 
genes such as GCK and TCF7L2 can indirectly, through 
their effect on intra-uterine glucose levels, influence fetal 
growth [40,41]. The hypothesis suggests that the glucose 
raising variants in mothers increase the birth weight of 
offspring because the fetal pancreas is exposed to more 
glucose and therefore secretes more insulin. In contrast, 
the genetic variants at CDKAL1, HHEX/IDE and ADCY5 
loci are associated with birth weight through fetal 
genotype independently of maternal genotype [40-43]. 
Variants at the CDKAL1, HHEX/IDE and ADCY5 loci are 
all associated with insulin secretion and their association 
with birth weight suggests the mechanism starts in 
prenatal life. The association of three type 2 diabetes loci, 
CDKAL1, HHEX/IDE and ADCY5, with birth weight is 
consistent with the fetal insulin hypothesis. The 
assessment of the role of the remaining 62 type 2 diabetes 
loci with birth weight could elucidate whether type  2 

Table 2. Evidence of links between SHBG and sex hormones and insulin resistance/type 2 diabetes from non-genetic 
studies

Study Primary perturbation Effect on insulin secretion/resistance Reference(s)

Evidence that SHBG is upstream of type 2 diabetes 

Prospective studies  Altered levels of sex hormones Increased risk of type 2 diabetes [34]

PCOS in women Elevation in levels of androgens Increased risk of non-insulin-dependent  [45] 
  diabetes mellitus

Randomized controlled trial Androgen supplementation in men with low  Increased insulin sensitivity [46] 
 testosterone levels

Animal model (male mouse) Lack of androgen receptor Insulin resistance [47]

Animal model (female rat) Treatment with testosterone after oophorectomy Insulin resistance [48]

Evidence that SHBG is downstream of type 2 diabetes 

In vitro study Incubation of hepatoblastoma cell line with IGF-I Decreased SHBG levels [49]

Animal model (mouse) and  Increased fasting glucose Downregulation of SHBG expression [50]
in vitro study

Intervention study Insulin lowering interventions in non-diabetic  Increased SHBG levels [51,52] 
 men and women (without PCOS)

Study of obese women with PCOS Increase insulin levels Reduced serum SHBG levels [53]

IGF-1, insulin-like growth factor I; PCOS, polycystic ovarian syndrome; SHBG, sex hormone binding globulin.
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diabetes loci in addition to CDKAL1, HHEX/IDE and 
ADCY5 also influence prenatal growth.

Limitations of genetic association studies
The genetic links between type 2 diabetes and metabolic 
traits have highlighted possible new biological pathways. 
Nevertheless, genetic association studies have some 
limitations. One caveat is that the variant discovered by 
GWASs may not be the actual causal variant but just 
linked to it on a chromosome (linkage disequilibrium). 
Indeed, the causal variant could be in a nearby gene or 
non-genic region. The other limitation is that the variants 
discovered to be associated with complex traits explain a 
very small proportion of individual variation in disease 
risk or trait levels. These small effect sizes have com-
promised the disease predictive value of common genetic 
variants. One explanation is that common diseases such 
as type 2 diabetes are caused not only by many common 
variants with small effect but also by rare variants with 
larger effect that would not be detected in a GWAS. With 
the advent of high-throughput platforms and methods, 
full sequencing of samples could make it feasible to assess 
structural variants and rare variants and discover more of 
the heritable component to type 2 diabetes.

Summary
In summary, we have presented a number of examples of 
how genetics helps us understand the complex asso-
ciations between type  2 diabetes and many other 
metabolic traits, including glucose homeostasis, circa-
dian rhythm, SHBG, inflammation and birth weight.

GWASs, which do not rely on a prior understanding of 
disease biology, have resulted in remarkable progress in 
our understanding of the genetic underpinnings of type 2 
diabetes in the last 5 years. We anticipate that advances 
in technology and resources, including very large sample 
sizes such as the 500,000 individuals available in the UK 
Biobank, will lead to even more progress in under-
standing the highly complex genetic and non-genetic risk 
factors for metabolic diseases.
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