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Abstract

We developed a novel software tool, EXCAVATOR, for the detection of copy number variants (CNVs) from
whole-exome sequencing data. EXCAVATOR combines a three-step normalization procedure with a novel
heterogeneous hidden Markov model algorithm and a calling method that classifies genomic regions into five copy
number states. We validate EXCAVATOR on three datasets and compare the results with three other methods. These
analyses show that EXCAVATOR outperforms the other methods and is therefore a valuable tool for the investigation
of CNVs in largescale projects, as well as in clinical research and diagnostics. EXCAVATOR is freely available at
http://sourceforge.net/projects/excavatortool/.

Background
Copy number variants (CNVs) are operationally defined
as 50 bp or larger DNA segments [1] that are present
at a variable copy number in comparison with a refer-
ence genome. CNVs have been demonstrated to be one of
the main sources of genomic variation in humans [2-10]
and have been shown to participate in phenotypic vari-
ation and adaptation by disrupting genes and altering
gene dosage. Some CNVs are found in normal individ-
uals, while others contribute to causing various diseases
including cancer, cardiovascular disease, HIV acquisition
and progression, autoimmune diseases and Alzheimer’s
and Parkinson’s diseases [11,12].
In the last few years, several high-throughput sequenc-

ing (HTS) platforms [13-15] have emerged that, by simul-
taneously sequencing billions of short DNA fragments
(reads), can be used to sequence a full human genome
per week at a cost 400-fold less than previous methods.
The development of these HTS platforms has made
large-scale re-sequencing projects possible, such as the
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1000 Genomes Project and the Cancer Genome Atlas,
but their computational complexity still limits the routine
use of whole-genome sequencing to individual smaller
projects. Whole-exome sequencing (WES), which is the
sequencing of all the coding regions of a genome, is a very
effective alternative to whole-genome sequencing and has
been successfully used to discover common and rare sin-
gle nucleotide variants (SNVs), small insertions/deletions
(indels) and breakpoints of structural variation [16,17].
Although WES is a powerful tool for investigating the

great majority of genomic variants, it is unsuitable for ana-
lyzing CNVs: the sparse nature of the target and the non-
uniform read-depth among captured regions make WES
data unsuitable for read-pair [18,19] or split-read [20,21]
algorithms and make the read count (RC) approach par-
ticularly challenging [22-24]. At present, there are a few
publicly available tools that can identify CNVs from WES
data using the RC approach: ExomeCNV [25], CoNIFER
[26], XHMM [27] and CONTRA [28].
ExomeCNV was the first tool implemented to detect

CNVs from WES data. It uses a two-step normalization
procedure to mitigate systematic biases due to GC con-
tent and mappability, and it estimates copy number values
using an uncalibrated read depth. Depending upon batch
effects, this can result in the algorithm reporting a signif-
icant fraction of the exome as non-diploid. ExomeCNV
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uses the circular binary segmentation (CBS) algorithm
[29] to detect the boundaries of altered regions. CBS does
not take into account the distance between adjacent exons
and this can lead to it missing large and small genomic
alterations in sparsely targeted regions, when applied to
WES data [30]. CoNIFER and XHMM exploit singu-
lar value decomposition (SVD) and principal-component
analysis (PCA) to identify and remove the principal
sources of variation underlying the non-uniform read
depth of captured regions. The SVD and PCA normal-
ization procedures require the analysis of many samples
at once, thus limiting their application to sequencing
projects with a large number of samples.
CONTRA uses a base-level log-ratio strategy to remove

GC content bias and correct for the library size effect.
Nevertheless, it has been demonstrated that the ratio
between the RCs of case and control samples is not able
to remove GC content bias completely [31]. Moreover,
all of these tools classify each genomic region according
to a three-state classification scheme (deletion, normal
and amplification), which does not discriminate between
two- and single-copy deletions and between three- and
multiple-copy amplifications, thus limiting the potential
of RC data to predict the exact number of DNA copies.
To overcome the limitations of existing methods in

detecting genomic regions involved in CNV using WES
data, we developed a novel software package, EXCAVA-
TOR (EXome Copy number Alterations/Variations anno-
tATOR), which uses a RC approach. We studied the
systematic biases of sequencing data causing the non-
uniform read depth of captured regions and we developed
a three-step normalization procedure that mitigates the
effects of these biases. To take into account the sparse-
ness of WES data throughout the genome, we developed a
novel segmentation algorithm that exploits the distances
between consecutive exons to improve the detection of
small and large altered regions covered by few exons.
Finally, we combined our normalization and segmentation
methods with a calling procedure to classify each genomic
region as one of five discrete copy number states and
we packaged everything into the EXCAVATOR software
tool.
We tested the EXCAVATOR pipeline by analyzing

three different WES datasets: a population dataset gen-
erated by the 1000 Genomes Project Consortium and
two datasets generated in our labs comprising melanoma
cancer and intellectual disability samples. To evaluate
its performance, we compared the results obtained by
EXCAVATOR with three other state-of-the-art pipelines.
Furthermore, we validated the results obtained by EXCA-
VATOR using copy number profiles generated by SNP
array technology, demonstrating its power and versatility
for discovering small and large genomic regions involved
in CNVs.

Results and discussion
Data biases and correction
To study DNA copy number variations from targeted
sequencing data, we consider the mean number of reads
aligned to each exon, that is the exon mean read count
(EMRC). EMRC is defined as:

EMRCe = RCe
Le

(1)

where RCe is the number of reads aligned to a target
genomic region e and Le is the size of that same genomic
region (in base pairs). EMRC is calculated for each tar-
geted region of the genome and gives a measure of the
density of reads aligned to that particular region. To
study the statistical properties and the sources of bias of
EMRC data we exploited the WES data of eight individu-
als sequenced by the 1000 Genomes Project Consortium
(NA10847, NA19131, NA19138, NA19152, NA19153,
NA19159, NA19206 and NA19223); see Additional file 1
for more details.
First, we studied the relation between EMRC and

three bias sources: the local GC content percentage, the
genomic mappability and the size of the targeted regions
(see Materials and methods for more details). The results
of these analyses are shown in Figure 1. In agreement
with previous reports [31-34], we observed that EMRC
is strongly correlated to the local GC content percent-
age: it is highest for values of GC content between 35%
and 60% while it decreases at both extremes (Figure 1a).
As previously reported for RC data [31], we found that
EMRCs are affected by genomic mappability: the larger
the mappability score, the smaller the EMRC distribution
variance. Moreover, mappability affects the mean num-
ber of aligned reads (Figure 1c). Interestingly, our analysis
indicated that the mean number of reads aligned to a tar-
geted region of the genome is correlated to the size of that
region. In particular, for exons smaller than 150 bp, we
found that the EMRC value grows as a function of targeted
region size, while for exons larger than 150 bp, EMRC
reaches a plateau and remains constant (Figure 1e). These
results show that EMRC data require a normalization step
before being used to detect genomic regions involved in
CNVs.
To minimize the effect of these sources of variation

and make the data within and between samples com-
parable, we implemented a three-step bias removal pro-
cedure based on the median normalization approach
introduced in [23] for the removal of the GC content
effect and extended in [31] for mitigating mappability bias
(see Materials and methods for more details). To eval-
uate the performance of the median normalization pro-
cedures described in the Materials and methods section,
we applied them to the WES data of the eight samples
generated by the 1000 Genomes Project Consortium. The
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Figure 1 EMRC data biases, normalization and CNV prediction ability. (a), (c), (e) Correlation between EMRC data and the three bias types due
to GC content percentage (a), genomic mappability (c) and exon size (e). (b), (d), (f) The effect of the median normalization procedures on the
removal of the three bias sources: GC content percentage correction (b), genomic mappability correction (d) and exon size correction (f). The
upper border of the dashed lines is the 90th percentile of the EMRCs, while the lower border is the 10th percentile. (g), (h), (i), (j) Histograms and
boxplots summarizing the capability of EMRC data to predict the exact number of DNA copies of a CNV region. (g) and (i) show the prediction
capability for single-sample EMRC data, while (h) and (j) are the prediction capability for the EMRC ratio. EMRC ratios were calculated by using the
NA10847 sample as control. These calculations were performed using several broad genomic regions that were previously reported to have copy
numbers equal to 0, 1, 2, 3 and 4 by McCarroll et al. [7] in the eight samples from the 1000 Genomes Project. R is the Pearson correlation coefficient.
CNV, copy number variant; EMRC, exon mean read count.
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normalized data show in Figure 1b,d,f demonstrate that
median normalization approaches are able to mitigate the
effect of all three bias sources, equalizing the mean level
of each bin to the same master mean.
Since the first exon of each gene is GC richer than the

final and internal exons, this bias can affect the detection
of CNVs that include first exons. To investigate the capa-
bility of our normalization procedure to mitigate the first
exon effect, we compared the distribution of EMRC values
for first and all other exons before and after the normal-
ization step. The results of this analysis are reported in
Additional file 1: Figure S1. As expected, the mean level of
EMRC values for first exons is smaller than EMRC values
for internal and final exons. Nevertheless, normalization
allows for the removal of this difference, equalizing the
mean levels of EMRC values for first exons and all other
exons. Next, to understand the capability of EMRC data to
predict the exact DNA copy number values of a genomic
region, we examined several broad genomic regions that
were previously reported to have copy numbers equal to 0,
1, 2, 3 or 4 byMcCarroll et al. [7] for the eight samples (see
Materials and methods). In this analysis we compared the
distribution and the CNV prediction capability for both
single-sample EMRC data and the ratio between EMRC
data from two samples.
The histograms in Figure 1g show that for single-sample

data (with the median normalized to copy number two),
the EMRC distributions for genomic regions with differ-
ent DNA copy number states have a significant overlap
and completely fail to predict the exact number of copies,
as shown in Figure 1i, where the Pearson correlation coef-
ficient calculated between the real and predicted DNA
copy number values is R = 0.19. On the other hand, the
EMRC ratio between two samples allows for a better dis-
crimination of genomic regions with different numbers
of DNA copies, as illustrated in Figures 1h and 1j, where
the Pearson correlation coefficient between the real and
predicted DNA copy number values is R = 0.80. Remark-
ably, as shown in Figure 1j, normalized ERMC ratios can
distinguish between even intermediate CN ratios, such as
2/3, 3/4, 4/5 and 3/2, 4/3, 4/2, despite their overlapping
distributions. For these reasons, in all the analyses we per-
formed for this work, we decided to use the ratio between
EMRC data from test and control samples to identify
genomic regions involved in CNVs: in particular, we chose
to use the log-transformed ratio (log2 ratio) between test
and control samples normalized with the LOWESS scat-
ter plot normalization procedure (see Additional file 1 for
more details).

Segmentation and calling algorithms
After EMRC bias correction, we calculated the logarithm
of the ratio between test and control samples (log2 ratio)
and we sorted the data with respect to their genomic

position. The obtained signal is mathematically very sim-
ilar to those generated by RC analysis [31]: deletions
(or amplifications) are identified as a signal decrease (or
increase) across multiple consecutive targeted regions.
For this reason, as in RC data analysis, the log2 ratios
of EMRC data need to undergo a segmentation step to
detect the boundaries of the genomic regions with altered
DNA copy number. The only difference between RC and
EMRC data is the distance between consecutive genomic
regions: RCs are estimated for non-overlapping and con-
tiguous genomic windows with predefined lengths, while
EMRCs are calculated for genomic windows (correspond-
ing to targeted regions) with different sizes and variable
distance. The distance between consecutive exons within
the same gene ranges from few base pairs to 100 kb (with
a median value of 1500 bp), while the distance between
consecutive genes (calculated as the distance between the
final exon of a gene and the first exon of the subsequent
gene) ranges from hundreds of base pairs to millions of
base pairs (with a median value of 25 kb). For this reason,
we can find genomic regions comprising a large number
of exons as well as highly isolated genomic regions with
few exons using the log2 ratio of EMRC profiles.
To take into account this peculiar characteristic of

EMRC data, we extended the shifting level model (SLM)
segmentation algorithm [22,35] to include the distance
between consecutive exons (defined as the distance
between the midpoints of consecutive exons). In SLM,
sequential observations x = (x1, . . . , xi, . . . , xN ) are con-
sidered to be realizations of the sum of two independent
stochastic processes xi = mi + εi, where mi is the unob-
served mean level and εi is normally distributed white
noise. The mean level mi does not change for long inter-
vals and its duration follows a geometric distribution: the
probability that mi takes a new value at any point i is
regulated by the parameter η. We included the distance
between consecutive exons (di) in the SLM by defining the
parameter η as:

η(di) ∼ exp
[

1
di/dNorm

]
(2)

where dNorm is a distance normalization parameter.
We thus obtained a heterogeneous shifting level model
(HSLM) in which as the genomic distance between con-
secutive exons increases, so does the probability of jump-
ing from one state to another. This feature allows the
HSLM algorithm to detect both highly isolated genomic
regions covered by few exons and large genomic regions
covered by many exons with a comparable accuracy. A
detailed description of the heterogeneous shifting level
model and its algorithm is given in Additional file 1.
Once the log2 ratios have been segmented with the

HSLM algorithm, each segment needs to be classified
as a discrete copy number state. As reported in the
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Background section, all of the recently published tools
can classify genomic regions using a three-state clas-
sification scheme (deletion, normal and amplification),
which limits the potential of RC data to predict two-
copy deletions and multiple-copy amplifications. To
overcome these limitations, we decided to exploit the
FastCall algorithm [36], which we developed to classify
array-CGH (comparative genomic hybridization) data,
by applying it to WES data. The FastCall algorithm
can classify each segmented region using a five-state
classification scheme (two-copy deletion, one-copy dele-
tion, normal, one-copy duplication and multiple-copy
amplification) and thus we can discriminate double-copy
from single-copy deletions and single-copy frommultiple-
copy duplications (see Materials and methods for more
details). All the algorithms and methods described above
have been packaged in the EXCAVATOR software (see
Materials and methods).
To test the ability of the HSLM algorithm to detect

CNVs of different sizes as a function of the distance
between consecutive exons, we performed an inten-
sive simulation based on synthetic data. Synthetic chro-
mosomes were generated from the EMRC data of the
eight samples described above and previously character-
ized by [7]: there were seven samples of Yoruba ances-
try (NA19131, NA19138, NA19152, NA19153, NA19159,
NA19206 and NA19223) and one sample of Caucasian
ancestry (NA10847). The EMRC data were first cor-
rected for the three bias sources and then the EMRC
log2 ratio was calculated using each possible combination
with one sample as control and the other seven sam-
ples as tests. To reproduce the complex architecture of
exome data, we generated synthetic chromosomes using
synthetic genes as building blocks. Each synthetic gene,
with the exception of g genes (the altered genes), has a
random number of exons sampled from a uniform dis-
tribution U(5, 100) (that is, the number of exons ranges
from 5 to 100). The number of exons in the altered genes
is defined by the integer parameter N and the total num-
ber of exons in each synthetic chromosome is constrained
to be 1,000. The distances between adjacent exons that
belong to the same gene are sampled from a uniform dis-
tribution U(10, 10000) (ranging from 10 to 10,000 bp),
while the distance between adjacent genes is set equal
to a predefined distance D. The DNA copy number val-
ues of each synthetic chromosome were generated by
exploiting the results reported in [7]. To simulate nor-
mal copy regions, we sampled (1000 − N) log2 ratio data
from genomic regions previously predicted as two-copy
in [7] for both test and control samples and to simu-
late one-copy (three-copy) regions, we sampled N log2
ratio data from regions previously predicted as one-copy
(three-copy) for the test sample and two-copy for the
control sample.

We performed simulations with g = [1, 2, 3, 4, 5], N =
[2, 3, 5, 10, 20, 50] and D = [10 kb, 50 kb, 100 kb, 500 kb,
1 Mb, 5 Mb] and for all combinations of g, N and D
we generated 1,000 synthetic chromosomes: all the syn-
thetic datasets were analyzed using different values of the
parameter DNorm (103, 104, 105 or 106).
To assess the accuracy of HSLM in detecting CNVs at

the boundaries (breakpoint detection) we computed the
receiver operating characteristic (ROC) curve as in [37]
and we compared its performance to that of the circu-
lar binary segmentation (CBS) algorithm [29], which has
been used in other traditional packages for exome-CNV
analysis, such as ExomeCNV [25] and VarScan2 [30]. The
results of these analyses are summarized in Figure 2a,b,c,d
and Additional file 1: Figures S2 to S49. Overall they
show that our segmentation algorithm outperforms the
CBS method in both sensitivity and specificity for all the
alteration sizes we simulated. Panels c and d of Figure 2
also show that the larger the number of altered regions
in a chromosome, the lower the accuracy of the CBS
method. On the other hand, increasing the number of
altered regions in a chromosome does not affect the global
performance of HSLM. Remarkably, synthetic analysis
indicates there is a difference in the accuracy of detec-
tion of genomic regions with one copy and three copies.
Both CBS and HSLM detect one-copy regions with higher
sensitivity than three-copy regions and this behavior can
be ascribed to two main reasons. The first is numeri-
cal: the signal shift for three-copy regions (log2(3/2) =
0.58) is smaller than the signal shift for one-copy regions
(log2(1/2) = −1) and the segmentation algorithms are
sensitive to the extent of this shift. The second reason lies
in the fact that the variance of RC data is lower for deleted
states (zero or one copy) and it proportionally increases
with copy number values [23]: the larger the variance,
the smaller the sensitivity of segmentation algorithms in
detecting signal shifts.
As a further test, to assess the ability of our segmenta-

tion algorithm to identify the exact breakpoint of a CNV
region correctly, for each synthetic chromosome we cal-
culated the distance (in exons) between the predicted and
the correct breakpoint positions and we compared its
performance with CBS. The results of these analyses are
shown in the histograms of Figure 2c,d, which show that
HLSM can correctly detect the exact position of 94% of
the breakpoints on synthetic chromosomes, while CBS
predicted the exact position only of 50% of the break-
points. Finally, to evaluate the capability of the HSLM and
FastCall procedures in discovering CNVs, we exploited
the method reported in [23] and [22]: a detected segment
is considered a true positive (TP) if there is at least a
50% overlap between the detected segment and the syn-
thetic altered region, while it is considered a false positive
(FP) if there is no overlap with a synthetic altered region.
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Figure 2 Performance evaluation of the HSLM algorithm for detecting CNVs in synthetic chromosomes. (a), (b) ROC curves comparing the
sensitivity and specificity of the HSLM and CBS algorithms in the detection of one-copy (a) and three-copy CNVs (b). (c), (d) Comparisom of the
HSLM and CBS algorithms when analyzing synthetic chromosomes with different numbers (g = [1, 2, 3, 4, 5]) of one-copy (c) and three-copy (d)
genes. (e), (f) Performance of the HSLM (e) and CBS (f) algorithms in detecting the correct breakpoint position. The x axis is the distance between
the predicted and the correct position. The y axis is the percentage of breakpoints predicted at a given distance from the correct position. (g), (h),
(i), (j) TPR and FP plots for different values of the DNorm parameter versus exon number in the segmented region. (g) and (h) show TPR and FP
when analyzing one-copy regions. (i) and (j) are TPR and FP when analyzing three-copy regions. Each curve point was obtained by averaging across
5,000 simulations (1,000 synthetic chromosomes for g = [1, 2, 3, 4, 5]).
CBS, circular binary segmentation; CNV, copy number variant; FPR, false positive rate; HSLM, heterogeneous shifting level model;
TPR, true positive rate.

Moreover, to better investigate the FP events detected
by HSLM we generated synthetic chromosomes with no
altered regions (g = 0). The true positive rate (TPR)
and false positive (FP) plots reported in Figure 2g,h,i,j
and Additional file 1: Figures S50 to S56 show that the
larger the distance between adjacent genes (D) the higher
the sensitivity of HSLM in detecting genomic alterations.
This feature is a direct consequence of how we modeled
the parameter η(di) of the HSLM (the larger the genomic
distance D the larger the probability of jumping from
one mean level mi to another mi+1) and this allows our
algorithm to detect both highly isolated genomic regions
covered by few exons and large genomic regions cov-
ered by many exons with a comparable accuracy. For
genomic distances D smaller than 500 kb, we were able
to detect one-copy regions with ten exons (TPR= 0.99)
and three-copy regions with 20 exons (TPR= 0.8), while
for D ≥ 1 Mb we detected one-copy regions with three
exons (TPR= 0.95) and three-copies regions with ten
exons (TPR= 0.8). Finally, the analysis of the synthetic
chromosomes demonstrated that the DNorm parameter is
fundamental for modulating the resolution of our algo-
rithm. As expected, the results shown in Figure 2 and
Additional file 1: Figures S50 to S55 show that the smaller
the value of DNorm the stronger the ability of HSLM to
detect small genomic events. On the other hand, small
values of the DNorm also increase the total number of
FP events detected. However, in terms of specificity, our
method detected a very small number of FP events, the

great majority of them (96%) being events that include
less than five exons (see panels h and j of Figure 2 and
Additional file 1: Figure S56).

Population data analysis
To show the potential of our analysis pipeline for popu-
lation genomics studies, we applied EXCAVATOR on the
WES data of 20 healthy individuals (seven Utah residents
(CEU) with ancestors from northern and Western Euro-
pean, seven Japanese people (JPT) from Tokyo and six
Yoruba people (YRI) from Ibadan) using the WES data of
an individual of Yoruba ancestry as control (see Table 1).
The table shows the total number of samples used as tests
and controls, the enrichment kit used to capture coding
sequences, the sequencing platform and the sequencing
depth obtained for test and control samples.
According to the Fort Lauderdale principle for the use

of unpublished data for method development, we give
only the CNV regions detected on chromosome 1 and
chromosome 4. Globally we detected 101 CNV events
(with a median number of five CNV regions per sample),
with a minimum of two regions for the NA12760 sample
and a maximum of eight regions for the NA10847 sam-
ple. The mean size of these regions was approximately 135
kb, with a minimum size of approximately 5 kb in 11 sam-
ples (NA10847, NA11840, NA12717, NA12751, NA12760,
NA18959, NA18973, NA19138, NA19159, NA19206 and
NA19223) and amaximum size of approximately 900 kb in
eight samples (NA10847, NA12249, NA12717, NA12751,
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Table 1 Summary statistics of the three datasets analyzed in this paper

Cohort Test Control Capture HTS Mean depth Mean depth

samples samples version platform on tests on controls

1000 Genomes Project 20 1 SureSelect HiSeq2000 83× 107×
All Exon V2

Melanoma 6 6 SureSelect GA IIx 45× 41×
All Exon 50 Mb

Intellectual disability 2 1 TruSeq HiSeq2000 63× 65×
Exome enrichment

NA12761, NA18973, NA18959 and NA18981). The com-
plete list of the CNVs detected on chromosomes 1 and 4
is given in Additional file 2: Table S1.
To evaluate the accuracy of our computational

approach, we analyzed the data for the 20 healthy individ-
uals using the other three recently published methods for
CNV calling from WES data: ExomeCNV, CoNIFER and
XHMM (see Materials and methods for analysis settings).
As reported in Background section, the performance of
SVD and PCA methods depends on concurrently ana-
lyzing many samples, so that systematic noise becomes
evident and can subsequently be removed. For this rea-
son, to improve the accuracy of CoNIFER and XHMM, we
used these two tools by adding 80 extra samples to the 20
used with EXCAVATOR and ExomeCNV (see Additional
file 1 for more details). Globally we observed that the
total number of CNV events detected by each of the three
tools was very different (Table 2). On chromosomes 1 and
4 of the 20 individuals, CoNIFER detected only 9 CNV
regions, XHMM 55 CNVs, while ExomeCNV identified
1,791 events (Table 2). Of the 9 CNV regions detected
by CoNIFER, 6 (66%) are present only in one sample
(rare variants) while 3 (33%) are shared by more than one
sample (common variants). Similarly, XHMM detected
12 rare CNVs (21.8%, 12/55) and 43 common variants
(78.2%). On the other hand, the great majority of the
CNV events detected by EXCAVATOR and ExomeCNV
are common variants: EXCAVATOR detected 10% of rare
variants (10/101) and ExomeCNV 5% (99/1,791). The
large proportion of rare events detected by CoNIFER and
XHMM could be related to the normalization methods
that are the basis of these two computational pipelines:
singular value decomposition (SVD) for CoNIFER and
principal component analysis (PCA) for XHMM. PCA
and SVD are eigenvalue methods used to reduce a
high-dimensional dataset into fewer dimensions while
retaining important information. CoNIFER and XHMM
use them to determine and filter out the principal compo-
nents of systematic noise. This filtering strategy can lead
to the removal of common CNV signals thus explaining
the preferential detection of rare events by these methods.
Conversely, ExomeCNV and EXCAVATOR analyze and

normalize one sample at a time and do not suffer from
this bias.
To validate the results obtained by the four methods, we

calculated the overlap between the four sets of genomic
events and the known CNVs annotated in the database
of genomic variants (DGV) and in the NCBI dbVar. For
each of the four algorithms, the overlap analysis took into
account all the discovered CNVs and rare and common
variants separately. The comparison of the four algorithms
and the CNVs in DGV and dbVar was performed using
two different overlap criteria: a region was considered

Table 2 Summary of the CNV events detected by the four
tools in the population data analysisa

Sample EXCAVATOR XHMM CoNIFER ExomeCNV

NA10847 8 (6-2) 3 (3-0) 0 (0-0) 125 (122-3)

NA11840 3 (3-0) 2 (2-0) 0 (0-0) 124 (122-2)

NA12249 3 (3-0) 0 (0-0) 0 (0-0) 128 (128-0)

NA12717 6 (6-0) 4 (4-0) 0 (0-0) 113 (113-0)

NA12751 7 (5-2) 2 (2-0) 0 (0-0) 119 (118-1)

NA12760 2 (2-0) 2 (2-0) 0 (0-0) 126 (126-0)

NA12761 4 (2-2) 4 (3-1) 0 (0-0) 206 (173-33)

NA18959 6 (6-0) 2 (1-1) 0 (0-0) 149 (134-15)

NA18966 3 (3-0) 5 (4-1) 0 (0-0) 39 (35-4)

NA18967 5 (5-0) 2 (1-1) 0 (0-0) 21 (21-0)

NA18970 4 (4-0) 3 (3-0) 0 (0-0) 24 (24-0)

NA18973 7 (7-0) 0 (0-0) 0 (0-0) 91 (91-0)

NA18981 5 (4-1) 3 (3-0) 0 (0-0) 100 (99-1)

NA18999 3 (3-0) 2 (2-0) 0 (0-0) 229 (196-33)

NA19131 8 (6-2) 3 (3-0) 2 (1-1) 30 (30-0)

NA19138 5 (5-0) 3 (2-1) 1 (1-0) 48 (46-2)

NA19153 5 (5-0) 3 (1-2) 1 (0-1) 26 (25-1)

NA19159 4 (4-0) 5 (2-3) 2 (0-2) 28 (27-1)

NA19206 6 (5-1) 3 (2-1) 1 (0-1) 35 (33-2)

NA19223 7 (7-0) 4 (3-1) 2 (1-1) 30 (29-1)

Total 101 (91-10) 55 (43-12) 9 (6-3) 1,791 (1,692-99)

aFor each sample, columns show the number of all CNV events (common-rare)
identified by each tool.
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validated if there was any overlap greater than 10% (crite-
rion A) or 50% (criterion B).
The results of these analyses are summarized in

Figure 3a,b,c,d. For the all CNV and common CNV analy-
ses, the best results for the validation rate for the DGV and
dbVar databases for both overlap criteria were obtained
by EXCAVATOR and CoNIFER, followed by XHMM
and ExomeCNV. For the rare CNV analysis, CoNIFER
obtained the best validation rates, followed by EXCAVA-
TOR, XHMM and ExomeCNV. As a further step, to eval-
uate the sensitivity and the specificity of the four methods,
we compared the four sets of calls with the CNVs pre-
viously reported by McCarroll et al. [7] and Conrad
et al. [5] in the 20 samples included in our study. Also in
this case, all the comparison analyses took into account
all the discovered CNVs and rare and common variants
separately. Using microarray techniques, McCarroll et al.
[7] detected 100 CNV events (96 common CNVs and 4
rare CNVs) overlapping coding regions (with at least three
exons) on chromosomes 1 and 4 of these 20 samples, while
Conrad et al. [5] detected 120 events (116 common and

4 rare). Of the CNV regions reported by McCarroll et al.,
12 out of 100, and 76 out of the 120 reported by Conrad
et al., were not found by EXCAVATOR and ExomeCNV,
since the test and control samples had the sameDNA copy
number values for those traits. For this reason, we used
the whole reference set of CNVs used by McCarroll et al.
and Conrad et al. to validate the CoNIFER and XHMM
results, while EXCAVATOR and ExomeCNV were vali-
dated using a reduced dataset with variants having the
same copy number status in the test and control samples
filtered out. The two reference sets allowed us to evaluate
the precision (P) and recall (R) obtained by the four tools.
For each reference set, the precision was calculated as the
ratio between the number of correctly detected events
(the intersection between the tool calls and the validation
set calls) and the total number of events detected by a tool.
The recall was calculated as the ratio between the num-
ber of correctly detected events and the total number of
events in the validation set.
The results obtained by the four methods for the all
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Figure 3 Summary of the results obtained by EXCAVATOR on the 1000 Genomes Project samples. (a), (b), (c), (d) Overlap between the set of
CNVs detected by the four methods and the CNVs annotated in the DGV (a, b) and in the NCBI dbVar (c, d) with the two overlapping criteria: 10%
(a, c) and 50% (b, d). (e), (f), (g) Precision-recall plots of the comparison between the CNV events detected by the four methods included in this
comparison and the CNVs previously reported by McCarroll et al. [7] and Conrad et al. [5]. Light grey curves represent F-measure levels (harmonic
mean of precision and recall). (e) Results for all variants. (f) Results for common CNVs. (g) Results for rare CNVs.
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validations are very similar. In the McCarroll dataset,
CoNIFER obtained excellent results for precision followed
by EXCAVATOR, XHMM and ExomeCNV. ExomeCNV
was the best for recall, followed by EXCAVATOR,
XHMM and CoNIFER. The high recall rate obtained by
ExomeCNV is due to the large number of CNV events (see
Table 2) detected by this tool. However, the precision for
this method is very low since only a very small fraction
of the 1,791 events overlap with the McCarroll dataset.
In the Conrad dataset, all the methods gave poor results
with the exception of our computational pipeline: EXCA-
VATOR outperformed the other three software packages
for both precision and recall.
For the rare variants analysis, we observed that the

PCA-based approach performs well with the McCarroll
dataset (Figure 3g). CoNIFER obtained high precision and
moderate recall, while XHMM obtained high recall and
moderate precision. On the other hand, EXCAVATOR
gave very poor results: it was not able to identify any of the
rare events of the McCarroll dataset, and only two out of
the ten rare events detected by our method overlap with
theMcCarroll dataset. Conversely, for the Conrad dataset,
our pipeline achieved the best trade-off between preci-
sion and recall while the other three methods completely
failed the validation analysis. Taken as a whole, these
results highlight that EXCAVATOR outperforms the other
state-of-the-art methods considered in this comparison.

Melanoma data analysis
To evaluate the power of our computational approach
for cancer genomics studies, we used EXCAVATOR to
analyze six metastatic melanoma cell lines derived from
metastasis tumor biopsies of stage IV melanoma patients
and six blood samples from healthy donors were used as
controls (Table 1). Here, we aimed to test our pipeline
with respect to some typical major challenges of cancer
genomics analyses, such as the ability to analyze widely
rearranged karyotypes, with many different copy number
alterations (CNAs) that often result in significant sam-
ple diversity. Given these issues, the detection of CNAs
in tumor samples and the correct quantification of their
DNA copies can be particularly challenging.
To evaluate the accuracy and resolution of WES data in

discovering CNAs of different kinds and sizes, we also per-
formed genomic profiling of the same 12 samples using
the Affymetrix 250K SNP Array platform. For each seg-
mented region, we compared the log2 ratio median values
obtained from WES and the SNP array and calculated
their global correlation over the whole dataset. This cal-
culation was performed considering all the segmented
regions or progressively filtering out regions smaller than
a threshold (which we set at 100 kb, 500 kb or 1 Mb).
The results of this correlation analysis are shown in the
central panels of Figure 4. A strong correlation between

the SNP array and WES results (R = 0.85) was observed
for segmented regions larger than 1 Mb. Conversely, con-
sidering progressively smaller genomic regions, the cor-
relation between the two platforms drastically decreased
mainly due to the different distributions of the SNP probes
and exons throughout the genome. This was confirmed
by comparing the number of Affymetrix SNP probes and
the number of exons that cover each segmented region
(Additional file 1: Figure S57): segmented regions larger
than 1 Mb comprise a comparable number of SNP probes
and exons (R = 0.8), while segmented regions smaller
than 100 kb do not (R = −0.02).
Another important feature emerging from this correla-

tion analysis is the larger dynamic range provided byWES
data: for genomic regions larger than 100 kb we found that
the slope of the regression line was greater than 1 and it
had a maximum value of 1.5 for regions larger than 1 Mb,
thus indicating that over the whole dataset WES data can
detect and quantify a wider range of copy number val-
ues with respect to SNP array data. The higher dynamic
range of WES data is a documented advantage of this
technology, which improves the ability of segmentation
algorithms to detect signal shifts and the ability of calling
algorithms to quantify the correct number of DNA copies.
This feature is particularly relevant in cancer genomics
analysis, where sample heterogeneity often hampers the
detection of CNAs and the correct quantification of their
DNA copy number. This is evident also in the melanoma
dataset: the Circos plot (Figure 4) shows all the CNAs
called by WES and SNP array, for each tumor sample (for
complete lists see Additional file 3: Table S2 for WES and
Additional file 4: Table S3 for SNP array results). Although
the genomic aberrations here found were globally consis-
tent with the typical well-knownmelanoma signature, it is
straightforward to note that on some chromosomes WES
and SNP array data returned different results.
All these results are directly related to the different

dynamic range and sensitivity peculiar to these two tech-
nologies. For many chromosomes across the six tumor
samples, WES data called one-copy deletions or one-copy
amplifications where SNP array data returned a normal
copy number state. In these cases, as shown for chro-
mosomes 4, 7, 10 and 17 in Additional file 1: Figures
S57 to S60, the copy number data derived from both
technologies showed a shift from the normal diploidy
baseline. However, the WES data resulted in a greater
shift than SNP array, thus allowing the classification of a
region as CNA by the calling algorithm. The same phe-
nomenon explains why, in cases where both technologies
detected exactly the same CNA in terms of boundaries,
the WES data was able to call multiple-copy amplifica-
tions whereas SNP array data called only one-copy gains,
as seen on chromosomes 1, 5, 7 and 9 in the Circos
plot (Figure 4). Overall, these data demonstrated that,
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Figure 4 Summary of the results obtained by EXCAVATOR on the melanoma dataset. The Circos plot summarizes all the CNV regions
detected in each of the six samples by both exome-seq and SNP array analysis. On each chromosome, melanoma samples are vertically ordered
(Me01, Me02, Me04, Me05, Me08, Me12), with two tracks (WES and SNP array) for each. Central panels show the global correlation calculated
between the log2 ratio median values obtained from the two technologies, when considering all the segmented regions (a) or segmented regions
larger than 100 kb (b), 500 kb (c) or 1 Mb (d). CNV regions are distinguished by color as two-copy deletions (red), one-copy deletions (orange),
one-copy amplifications (light green) and multiple-copy amplifications (dark green).
CNV, copy number variant.

particularly when dealing with cancer samples, the wider
dynamic range provided by WES data can be used to
obtain a greater sensitivity and, consequently, a better
discrimination and quantification of CNAs. Considering
these properties, the combination of WES data with the
EXCAVATOR pipeline improves the detection of CNAs

and, consequently, the identification of potentially inter-
esting genes affected by genomic imbalances that may
deserve further investigations as candidate cancer genes.
Indeed, as a proof of principle confirming the potential of
our method, we observed that on chromosome 7, in three
samples (Me04, Me08 and Me12), both WES and SNP
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array data detected the one-copy gain of a q arm typical of
a melanoma signature and encompassing the BRAF locus
on 7q34 (chr7:140433813-140624564), already known to
be affected by genomic amplifications in melanoma cell
lines [38]. In addition, EXCAVATOR called such a one-
copy gain also in Me02 (whereas SNP array data called
a normal diploidy over the whole chromosome), and a
multiple-copy amplification in Me01 and Me05, where
SNP array data showed only a one-copy gain. Moreover,
as examples of known melanoma genes typically affected
by deletions, our computational pipeline applied on WES
data identified a one-copy loss in two samples (Me01 and
Me04) covering the whole chromosome 10 and including
the PTEN locus on 10q23.31 (chr10:89623195-89728532),
which SNP array data completely missed. Similarly, on
chromosome 17p, while for Me08 both WES and SNP
array data detected a one-copy loss spanning over the
TP53 locus on 17p13.1 (chr17:7571720-7590868), WES
data were able to identify such a deletion also in Me02,
whereas SNP array data returned a diploid state. These
two genes are well-known tumor suppressor genes and
are frequently affected by one-copy deletions in up to 40%
of melanoma cell lines [38]. Such situations are visually
noticeable in the Circos plot of Figure 4 and are reported
in detail in Additional file 1: Figures S58 to S61.
As a final step, since ExomeCNV was purposely devel-

oped and calibrated on cancer data, we compared its
performance with that of EXCAVATOR in the analy-
sis of the six metastatic melanoma cell lines using the
six blood samples from healthy donors as controls (see
Materials and methods for analysis settings). The results
produced by ExomeCNV clearly indicate an overestima-
tion of CNV events: for almost all melanoma samples,
the algorithm detected more than 2 Gb of altered regions
(1,950 Mb for Me01, 2,302 Mb for Me02, 2,318 for Me04,
2,168 Mb for Me05, 2,265 Mb for Me08 and 2,168 Mb
for Me12). This overestimation of non-diploid regions
distributed over most of the exome is due to the fact
that ExomeCNV estimates DNA copy number values
using an uncalibrated read depth. Overall, these results
strongly suggest that EXCAVATOR gives novel and poten-
tially useful improvements and opportunities for cancer
genomics.

Intellectual disability data analysis
To demonstrate the ability of our computational pipeline
to detect genomic alterations involved in mental retar-
dation, we performed whole-exome sequencing of two
siblings with an intellectual disability (ID1 and ID2); see
Table 1. To show the flexibility of our computational
pipeline in combining and analyzing data generated by
different laboratories, we used, as control, the WES data
of a healthy individual of European descent sequenced by
[39] (see Materials and methods and Additional file 1 for

more details). The data were analyzed using EXCAVATOR
with default parameters and the results of this analysis are
shown in Additional file 5: Table S4 and summarized in
Additional file 1: Figure S62.
For autosomal chromosomes, EXCAVATOR detected

29 CNV regions in the ID1 sample and 24 CNV regions
in the ID2 sample, ranging from 1 Mb to 3 kb in size.
To distinguish putative pathogenic CNVs from normal
copy number polymorphisms, we assessed the overlap
between our calls and the known CNVs annotated in the
database of genomic variants (DGV) by using a 50% over-
lap criterion. We found that 22 out of 29 and 17 out of
24 regions overlap with DGV for the ID1 and ID2 sam-
ples, respectively. The CNV regions that do not overlap
with DGV range from 1 Mb to 26 kb in size. In this
set of CNVs, we found a large deletion on chromosome
2q11.1-2q11.2 (chr2:96780257-97833468), which is shared
by the two siblings and which was confirmed by using the
Affymetrix GeneChip SNP6.0 Array for both the siblings
(Additional file 1: Figure S63). By interrogating the ISCA
database [40], we found recurrent rearrangements involv-
ing this region and indicated as pathogenic in cases with
developmental delay. Seven ISCA deletions had a 87% to
100% overlap with those found by EXCAVATOR and six
of them were reported to be associated with ID, autism
or general developmental delay, with both a de novo ori-
gin and parental inheritance and different pathogenetic
roles (Additional file 6: Table S5). Interestingly, the same
genomic region (chr2:96726273-97676273) was found at
a very low frequency in cases affected by developmen-
tal delay (2/15,767), while it never occurred in controls
(0/8,329) [41].
Within this deleted region, 21 NCBI RefSeq genes

(ADRA2B, ANKRD23, ANKRD36, ANKRD39, ARID5A,
ASTL, WDR39, CNNM4, CNNM3, DUSP2, FAHD2B,
FAM178B, FER1L5, ITPRIPL1, KANSL, LMAN2L,
NCAPH, SEMA4C, SNRNP200, STARD7 and TMEM127)
have been mapped. Moreover, 13 genes are recorded
in the On-line Mendelian Inheritance in Man (OMIM)
[42] catalog, some of which are associated with congen-
ital disorders distinct from ID. Other genes are putative
candidates to be defective in ID or neurodevelopmen-
tal delay: ADRA2B (alpha-2B-adrenergic receptor, MIM
104260) is one of the three highly homologous alpha-2-
adrenergic receptors having a critical role in regulating
neurotransmitter release from sympathetic nerves and
from adrenergic neurons in the central nervous system
and ARID5A (AT-rich interaction domain-containing
protein 5A, MIM 61153) is a member of the ARID protein
family, which might play important roles in development.
Overall, the detection of a recurrent 2q11.1-2q11.2 dele-

tion in the two siblings affected by ID, demonstrated that
EXCAVATOR is a suitable tool for widely screening the
exomes of ID patients even for low-frequency CNVs. It
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has added a piece of information that possibly impli-
cates this genomic region in producing susceptibility to
neurocognitive defects.
Finally, we used the two ID samples to compare the

performance of our pipeline with that of the methods
mentioned in the Background section (see Materials and
methods for analysis settings). Tests are described in the
Population data analysis section. CoNIFER and XHMM
were not able to identify any genomic regions involved in
CNVs, thus confirming their limitations in analyzing small
datasets comprising few samples. On the other hand,
ExomeCNV detected 200 Mb (269 CNVs ranging from 36
Mb to 1 kb) and 342 Mb (245 CNVs ranging from 40 Mb
to 1 kb) of genomic regions involved in CNV for the ID1
and ID2 samples, respectively. As discussed above, these
results can be ascribed to the discrepancy in the total
sequence read count between the case and control sam-
ples. Taken as a whole, these results show the uniqueness
of our tool in the analysis of WES data for diagnosis.

Effect of mapping algorithms and read length on
EXCAVATOR performance
To investigate the effects of alignment tools and read
lengths on the global performance of our computational
pipeline, we analyzed the WES data for four individu-
als (NA10847, NA19131, NA19152 and NA19153) gen-
erated by the 1000 Genomes Project Consortium. To
study the dependence of the outcome from EXCAVA-
TOR on different short read aligners, we mapped reads
using three of the most popular and commonly used algo-
rithms (BWA [39], Bowtie2 [43] and SOAP2 [44]), while
to evaluate the effect of read length we cut the original
100-nucleotide-long paired-end reads of the four sam-
ples into 75-nucleotide-long and 50-nucleotide-long reads
and compared the outputs (see Materials and methods
for more details). Raw sequencing data were aligned to
the human reference genome (hg19) and then subjected
to a post-processing pipeline including Picard [45], SAM-
tools [46] and the Genome Analysis ToolKit [47] (see
Materials and methods for more details). After the map-
ping pipeline, for each aligner and read length, we applied
EXCAVATOR to the three samples, NA19131, NA19152
and NA19153, using NA10847 as control. First, we com-
pared raw read count values for different aligners and read
lengths. The comparison was performed by calculating
the Pearson correlation coefficient between the read count
values of each combination of aligner and read length.
The results of these analyses are reported in Additional
file 1: Figure S64 and show that using different aligners
with different read lengths slightly affects the total num-
ber of reads mapped at each exon of the genome. For
all read lengths investigated, Bowtie2 and BWA obtained
a correlation coefficient greater than 0.99. SOAP2aligner
had a smaller correlation coefficient than the other two

algorithms, nevertheless it was larger than 0.98 for all
examined cases. To evaluate the effect of read length and
mapping algorithm on the ability of EMRC data to pre-
dict the exact DNA copy number values of a genomic
region, we examined several broad genomic regions pre-
viously reported to have copy numbers equal to 0, 1, 2, 3,
4, 5 or 6 by McCarroll et al. [7]. We calculated the cor-
relation between the EMRC ratio and the absolute DNA
copies predicted by McCarroll et al. [7]. The results of
these analyses are reported in Additional file 1: Figure
S65 and show that the prediction of the absolute num-
ber of DNA copies is independent of the read length and
mapping algorithm: in all analyses we obtained a Pearson
correlation coefficient between 0.77 and 0.79.

Conclusions
In this work we present a novel computational method
based on the RC approach to detect CNV regions start-
ing from whole-exome sequencing data. We studied the
statistical properties and systematic biases of RC targeted
sequencing data and introduced a novel normalization
procedure to mitigate the effects of these biases. We also
demonstrated the capability of such normalizedWES data
to predict the exact number of DNA copies for CNV
regions.
Furthermore, we developed a novel heterogeneous hid-

den markov model based algorithm (HSLM), which
exploits the sparseness of coding regions throughout the
genome to detect both small isolated events and large
alterations. Testing HSLM on synthetic data showed that
it was able to detect, with a comparable accuracy, large
genomic regions covered by many exons as well as small
genomic regions covered by few exons. Moreover, syn-
thetic simulations were also exploited to compare the
performance of HSLM to the CBS algorithm. Our results
show that HSLM outperforms CBS in both sensitivity and
specificity, thus improving our ability to identify small and
highly isolated CNV regions covered by few exons. Also,
we extended a method previously developed for array-
CGH analysis to classify genomic regions obtained from
HSLM segmentation into discrete copy number states.
Finally, we packaged all these algorithms into a novel
software tool named EXCAVATOR.
To demonstrate the usefulness and versatility of our tool

in analyzing different experimental designs, we applied
our computational pipeline to three WES datasets gener-
ated using different exome capture and sequencing tech-
nologies and we compared its performance with three
recently published methods for CNV calling from WES
data (ExomeCNV, CoNIFER and XHMM).
To show the potential of EXCAVATOR in popula-

tion genetics studies, we analyzed 20 healthy individuals
sequenced by the 1000 Genomes Project Consortium and
previously genotyped with microarray technologies. Our
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method detected both rare and common variants and
the comparison with known CNVs from microarray stud-
ies show that EXCAVATOR outperforms the other three
pipelines in both precision and recall.
We tested our tool to see if it applicable to cancer

genomics studies by using it to identify genomic alter-
ations in six metastatic melanoma cell lines. The results
were compared with those obtained by SNP array anal-
ysis. We found considerable concordance between WES
and SNP array results, which show that WES data have
much greater sensitivity and a wider dynamic range than
SNP array data for detecting deletions and amplifica-
tions. A comparison with a tool developed and calibrated
for cancer data analysis (ExomeCNV), demonstrated that
EXCAVATOR had better performance for both sensitivity
and specificity.
Finally, we studied genomic alterations in two siblings

affected by intellectual disability. Our tool detected a large
deletion on chromosome 2, which was confirmed by SNP
array analysis for both samples and suggested that there is
potential pathogenic interest for this disease. None of the
other methods performed as well as EXCAVATOR.
All of the comparative analyses we performed high-

lighted the versatility of our software and its ability to
overcome the limitations and drawbacks of currently
available state-of-the-art tools. Importantly, while the
other software packages are limited to three classifica-
tion states, EXCAVATOR can quantify and discriminate
five copy number states, thus allowing it to distinguish
one-copy from two-copy deletions and one-copy dupli-
cations from multiple-copy amplifications. Moreover, we
found that ExomeCNV generates a huge number of false
positive events while CoNIFER and XHMM produce a
significant number of false negatives. These results are
mainly ascribed to the different normalization procedures
implemented in the three software packages: ExomeCNV
does not take into account the discrepancy in the total
sequence read count between the case and control sam-
ples, while CoNIFER and XHMM analyze many samples
simultaneously to remove systematic noise. The compu-
tational pipeline we presented in this paper can be run on
single samples and the results are not affected by dataset
size, thus making EXCAVATOR a suitable tool for the
investigation of CNVs in large-scale projects (such as the
1000 Genomes Project and the Cancer Genome Atlas) as
well as in clinical research and diagnosis.

Materials andmethods
GC content andmappability
To calculate the GC content percentage for each exon we
used the gc5Base tracks downloaded from the UCSCweb-
site [48]. gc5Base tracks give the percentage of G (guanine)
and C (cytosine) bases in five-base windows. Mappabil-
ity bias is due to the fact that the genome contains many

repetitive elements and aligning reads to these positions
leads to ambiguous mapping. We used the uniqueome
data in [49] to calculate a mappability score for each
exon. In this paper, the authors introduced a genomic
resource to understand the uniquely mappable proportion
of genomic sequences. We evaluated the uniqueness of
genomic sequences using an all-against-all alignment for
different word sizes. Alignments were performed with the
Imagenix Sequence Alignment System (ISAS) [50]. The
all-against-all alignments were performed independently
for tag lengths between 25 and 90 nucleotides with vary-
ing numbers of mismatches, in both nucleotide space and
color space. The results of these analysis were formatted
as bigBED and bigWig files and can be downloaded from
[51]. The bigWig files contain coverage values expressed
as rounded integer percentiles of full coverage (for exam-
ple, a value of 100 indicates that 100% of overlapping
N-mers are unique and contribute to coverage of that
coordinate; similarly a value of 50 indicates that 50% of
overlapping N-mers are unique). A mappability score for
each exon was obtained by averaging the coverage values
of the nucleotides belonging to the selected exon.

Exonmean read count data normalization
To minimize the effect of the three sources of variation,
we used a three-step bias removal procedure based on
the median normalization approach introduced in [23]
and in [31]. In practice, for all of the GC percentages
(0, 1, 2, . . . , 100%), all of the bin of mappability scores
(0, 0.1, 0.2, . . . , 1) and all of the bin of exon sizes (10 bp,
20 bp, 30 bp, . . .) we calculated the deviation of EMRC
from the exome average and then corrected each EMRC
according to:

EMRCi = EMRCi · m
mX

, (3)

where EMRCi is the exonmean read count of the ith exon,
mX is the median EMRC of all the exons that have the
same X value (where X = [GC content, mappability score,
exon size]) as the ith exon, and m is the overall median of
all the exons. At the end of this procedure, the EMRC for
each exon has been corrected for the three sources of bias.

Copy number estimation
To measure the ability of EMRC data to predict the exact
DNA copy number of a genomic region, we examined sev-
eral broad genomic regions that were previously reported
to have copy numbers equal to 0, 1, 2, 3 or 4 by McCarroll
et al. [7] for the eight samples (NA10847, NA19131,
NA19138, NA19152, NA19153, NA19159, NA19206 and
NA19223) generated by the 1000 Genomes Project Con-
sortium.McCarroll et al. [7] designed a hybrid genotyping
array (Affymetrix SNP 6.0) to measure 906,600 SNPs and
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copy numbers at 1.8 million genomic locations simultane-
ously. They used this array to develop a high-resolution
map of copy number variation for 270 HapMap sam-
ples. Their goal was to construct a map that was precise
and accurate for the boundaries of the genomic regions
affected by CNV and to determine an accurate integer
copy number level for each segment in each individ-
ual. The boundaries of each CNV were determined using
a hidden Markov model and the integer copy number
level was estimated using quantitative PCR. For sam-
ples NA19152, NA19159, NA19131, NA19153, NA19138,
NA19223, NA19206 andNA10847 they detected 191, 193,
183, 173, 172, 202, 185 and 148 CNV regions, respectively,
with copy numbers equal to 0, 1, 3 or 4. The table of DNA
copy numbers estimated in [7] were downloaded from the
Nature Genetics website. The results shown in Figure 1i,g
were obtained using the EMRC data median normalized
to copy number 2 of the seven samples of Yoruba ances-
try for genomic regions, while the results reported in
Figure 1h,j were obtained using the EMRC ratio between
the seven samples of Yoruba ancestry and the NA10847
sample for these genomic regions. To evaluate the linear
relation between RC and CNV regions we calculated the
Pearson correlation coefficient.

Calling algorithm
To classify each segmented region as one of five dis-
crete copy number states (two-copy deletion, one-copy
deletion, normal, one-copy duplication or multiple-copy
amplification) we used the FastCall algorithm [36], which
we developed to classify array-CGH data. The FastCall
calling procedure is a mixture model based algorithm,
which can be used to classify each segmented region as
one of five predefined copy number states: double loss,
loss, neutral, gain or multiple gain. Our calling proce-
dure models the mean of each segment as a mixture of
five truncated normal distributions and can also take into
account sample heterogeneity using a cellularity parame-
ter c (see Additional file 1 for more details). The algorithm
takes as input the mean level of each segment m =
(m1,m2, . . . ,mi, . . . ,mN ), identified by the HSLM algo-
rithm and gives as output the probability that a segment
(mean) belongs to a particular state.

EXCAVATOR tool
All the algorithms and methods here described have been
packaged in the EXCAVATOR software. EXCAVATOR is
a collection of Perl, Bash, R and Fortran codes. Figure 5
is a schematic representation of EXCAVATOR’s workflow
steps. It takes as input BAM files and gives as output
figures for raw and normalized data, plots of segmentation
and calling results and a list of detected CNVs as tab-
delimited text files. The package can analyze samples with
two different experimental designs: ‘pooling’ and ‘somatic’.

In the pooling scheme, each test sample is compared with
a pooled reference obtained by summing the total number
of reads for each exon across all the control samples. In
the somatic scheme, each test sample is compared with its
matched control. The EXCAVATOR tool can run on any
UNIX system (desktops and workstations). On a desktop
computer with a 2.5-GHz CPU and 8 GB of RAM, it takes
four hours to analyze tenWES samples sequenced at 60×.
The EXCAVATOR tool is freely available from [52].

Population dataset
The genomes of all 27 individuals were sequenced by the
1000 Genomes Project Consortium and data were down-
loaded from [53] as BAM files. The data were first filtered
and normalized as reported in Additional file 1 and then
analyzed using HSLM followed by the FastCall algorithm
with default parameters (see Additional file 1 for more
details).

Melanoma dataset
For the melanoma dataset, all tumor and normal sam-
ples were captured using the same target enrichment
kit (Agilent SureSelect Human All Exon 50 Mb kit) and
sequenced, one sample per lane, in a 76-bp paired-end
GAIIx run, thus obtaining a mean depth on the target of
43× (range 32× to 54×) (see Table 1 and Additional file 1:
Table S3). Exome sequencing data are available at the
Sequence ReadArchive under accession ERP001844.WES
reads of the 12 samples were aligned against the human
reference genome hg19 by means of the BWA aligner,
then filtered, normalized and analyzed by the HSLM
and FastCall algorithms with default parameters (see
Additional file 1). Since we did not have autologous nor-
mal samples for matched controls,WES reads from the six
normal blood samples were pooled and used as a common
reference baseline (see Additional file 1).
The same 12 samples were profiled using the Affymetrix

250K SNP Array platform and signal intensities were
acquired by the GCOS software and normalized with the
CNAG software. Melanoma cell line data were compared
to the common reference pool composed of the six nor-
mal blood samples. The normalized log2 ratio SNP copy
number values generated for each tumor sample were seg-
mented using the SLM segmentation algorithm and the
FastCall calling procedure was used to classify all the seg-
mented genomic regions into defined copy number states
(see Additional file 1).

Intellectual disability dataset
The two ID samples were captured using the same Illu-
mina Truseq Target Enrichment kit and sequenced as
100-bp paired-end reads with a mean base coverage of
63× using the Illumina HiSeq2000 platform (see Table 1
and Additional file 1: Table S4). Exome sequencing data
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calculations
RC test data

Normalization

NRC test data

Pooling

NRC control data

Somatic

HSLM and FastCall

BAM T1 BAM T2 ...

RCT1 RCT2 ...

NRC T1 NRC T2 ...

BAM C1 BAM C2 ...

RC control data

RCC1 RCC2 ...

NRC C1 NRC C2 ...

...

...

...

...

Results
BED VCF

Figure 5 EXCAVATOR workflow. BAM files of both test and control samples are processed by means of SAMtools and R scripts for EMRC
calculations. After EMRC calculation, EXCAVATOR corrects the data for GC-content, mappability and exon size. After normalization, normalized read
count (NRC) for each sample are organized according to the analysis mode (pooling or somatic) selected by the user: pooling mode to compare
one sample to a pool of normal controls, somatic mode to compare one sample to its corresponding normal control. Finally, HLSM and FastCall are
applied to normalized data and results are provided as tab-delimited text files (variant call format, VCF and BED format). HSLM, heterogeneous
shifting level model; RC, read count.

are available at the Sequence Read Archive under acces-
sion ERP001831. The WES data of the healthy individual
of European descent sequenced by [39] were generated by
the same exome-capture and sequencing platform used
for the two ID samples (Illumina Truseq Target Enrich-
ment kit and the Illumina HiSeq2000 platform). Reads
from the three samples were aligned against the human
reference genome hg19 by the BWA aligner, then fil-
tered, normalized and analyzed by the HSLM and FastCall
algorithms with default parameters (see Additional file 1).

Algorithm comparison
We compared our algorithm to three previously published
software packages: ExomeCNV [25], CoNIFER [26] and
XHMM [27]. We downloaded the ExomeCNV R package
version 1.4 from [54]. We used ExomeCNV with default
parameters: sensitivity and specificity were set at 0.9999
for exons (maximizing specificity) and 0.99 for calls (‘auc’
option), and the admixture rate was set at a value of 0.5
(although all the samples used in this work had no bio-
logical admixture, we found that this setting reduced the
number of false positive calls). We downloaded CoNIFER
0.2.2 from [55]. After running the analysis with the − −
plot_screen option, we examined the components plot and

we decided to run the final CoNIFER analyses with the
setting to remove two singular value decomposition com-
ponents (− − svd 2). XHMM was downloaded from [56].
The XHMM tool was applied to the three datasets using
the default parameter setting and following the instruc-
tions on [57].

Alignment algorithms and read trimming
Raw reads in fastq format were downloaded from [58] for
each of the four samples (NA10847, NA19131, NA19152
and NA19153). As a first step, the original 100-nucleotide
reads were trimmed to 75 nucleotides and 50 nucleotides
using the fastx-trimmer of the FASTX Toolkit 0.0.13.1
[59], then, raw reads were aligned to the human reference
genome (hg19) using BWA, Bowtie2 and SOAP2 with
default parameter settings. We downloaded BWA version
0.6.1-r104 from [60], Bowtie2 version 2.1.0 from [61] and
SOAPaligner version 2.21 from [62]. The output from
SOAP2aligner was converted into sequence alignment
map (SAM) format exploiting the Perl soap2sam.pl script
(available from [62]). SAM files were processed using
Picard [45], SAMtools [63] and the Genome Analysis
ToolKit (GATK) (3,4) release 2.5-2 [64]. In brief, SAM files
were binary compressed, sorted and indexed by SAMtools
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(samtools view, sort and index tools), duplicated reads
were removed by Picard (with MarkDuplicates) and base
quality score recalibration and local realignment around
indels followed the recommended workflow of the GATK
toolkit (RealignerTargetCreator, IndelRealigner, BaseRe-
calibrator and PrintReads).

Additional files

Additional file 1: Supplemental methods. Supplemental methods for
EXCAVATOR: detecting copy number variants from whole-exome
sequencing data.

Additional file 2: Table S1. The complete list of CNVs detected by
EXCAVATOR on chromosomes 1 and 4 of the population dataset.

Additional file 3: Table S2. The complete list of CNAs detected by
EXCAVATOR on the WES data of the melanoma dataset.

Additional file 4: Table S3. The complete list of CNAs detected by SLM
segmentation algorithm on the SNP array data of the melanoma dataset.

Additional file 5: Table S4. Complete list of CNVs detected by
EXCAVATOR on the WES data of the ID dataset.

Additional file 6: Table S5. List of the seven ISCA deletions that had a 87%
to 100% overlap with the large deletion that we found in our ID samples.
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