Castro et al. Genome Biology 2012, 13:R29
http://genomebiology.com/2012/13/4/R29

Genome Biology

SOFTWARE Open Access

RedeR: R/Bioconductor package for representing
modular structures, nested networks and multiple
levels of hierarchical associations

Mauro AA Castro, Xin Wang, Michael NC Fletcher, Kerstin B Meyer and Florian Markowetz'

Abstract

Visualization and analysis of molecular networks are both central to systems biology. However, there still exists a
large technological gap between them, especially when assessing multiple network levels or hierarchies. Here we
present RedeR, an R/Bioconductor package combined with a Java core engine for representing modular networks.
The functionality of RedeR is demonstrated in two different scenarios: hierarchical and modular organization in
gene co-expression networks and nested structures in time-course gene expression subnetworks. Our results
demonstrate RedeR as a new framework to deal with the multiple network levels that are inherent to complex
biological systems. RedeR is available from http://bioconductor.org/packages/release/bioc/html/RedeR html.

Rationale

Biological networks contain modules of genes or pro-
teins that may function in the same pathway [1]. As
genes or proteins inside a module can be co-regulated,
they are often represented by one single node in the
network [2]. Such modules can be inferred by a number
of statistical methods and the results are usually repre-
sented in graphs [3,4]. Given the complex associations
that can take place in these graphs, it is a challenge to
infer and visualize multiple levels or hierarchies within
and between subnetwork structures.

Popular software like Cytoscape [5] provide a general
framework to deal with part of this complexity by pro-
viding software plugins and visualizing networks in flat
topologies. Flat networks are largely adequate to deal
with different graph elements, as long as the network
levels stay small. However, when describing and defining
functional modules a hierarchical data structure is more
appropriate because this enables the construction of
graph elements within modules in a scalable system (for
example, chains of nested networks). Herein we present
RedeR, an R package combined with a Java core engine
to cope with hierarchical and nested network structures.

* Correspondence: florian.markowetz@cancer.org.uk
Cancer Research UK Cambridge Research Institute and Department of
Oncology, University of Cambridge, Robinson Way, Cambridge CB2 ORE, UK

( BiolMed Central

RedeR is designed to deal with three key challenges in
network analysis. Firstly, biological networks are modu-
lar and hierarchical, so network visualization needs to
take advantage of such structural features to avoid clut-
tered and uninformative ‘hairballs’. Secondly, network
analysis relies on statistical methods, many of which are
already available in resources like CRAN or Bioconduc-
tor. However, the missing link between advanced visua-
lization and statistical computing makes it hard to take
full advantage of R packages for network analysis.
Thirdly, in larger networks user input is needed to focus
the view of the network on the biologically relevant
parts, rather than relying on an automatic layout
function.

RedeR is designed to address these challenges: (i) we
implement modular objects for subnetworks that allow
to easily lay out and analyze network modules and their
connections; (ii) the software is tightly integrated to R -
while RedeR visualizes R outputs, its results can be
directly fed back into R for further statistical analyses,
which makes the power of R available for users primar-
ily interested in visualization but not statistical comput-
ing; and (iii) we implement a dynamic layout that
directly reflects user input.

We exemplify RedeR’s visualization and analysis cap-
abilities in a case study based on the re-analysis of gene
expression and chromatin immunoprecipitation (ChIP)-
on-chip data from an estrogen receptor (ER) study in

© 2012 Castro et al, licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


http://bioconductor.org/packages/release/bioc/html/RedeR.html
mailto:florian.markowetz@cancer.org.uk
http://creativecommons.org/licenses/by/2.0

Castro et al. Genome Biology 2012, 13:R29
http://genomebiology.com/2012/13/4/R29

the MCEF-7 breast cancer cell line [6]. We anticipate that
RedeR will be useful for integrative analyses and deriv-
ing gene expression networks that demand complex
data abstraction and multiple network levels.

Overview of the software

RedeR is distributed as an R/Bioconductor package. It is
implemented by S4 classes in R [7] combined with Java
graphical user interface. Standard Java Swing compo-
nents and the NetBeans IDE 6.9 development environ-
ment [8] were extensively used to implement the
graphical interface, which operates in conjunction with
R libraries. In what follows we describe the implementa-
tion of the main features of the software.

User-friendly interface in R
The software uses different strategies to link R to Java
(Figure 1). For the data interface, the callback engine
makes calls from R via xml-rpc protocol by setting R as
client and the Java app as server. For the graphic inter-
face, the calls are executed from the Java core through
dynamic libraries (that is, it wraps R graphics into Java
classes). Four packages are essential to build the inter-
face. At the Java side, the software uses the Apache
xmlrpc webserver [9] and the JRI library interface [10];
at the R side, it uses the XMLRPC and rJava packages
[11,12]. RedeR is invoked from R by the method ‘calld”:

# Set the server port and invoke the Java
app

> library (RedeR)

> rdp <- RedPort ()

> calld (xrdp)

This method sets the environment and all paths
required to start the callback engine, after which the
software can either interact with R or run as a stand-

Page 2 of 11

alone application. The graphic interface is extensively
controllable from the R command line and provides sev-
eral menus that allow basic actions, such as selecting
nodes and changing their appearance. In order to main-
tain a high level of compatibility, all methods in the R
interface use igraph objects as prototype data format.

Unique data structure for hierarchical networks

The schematic representation of how data are stored in
RedeR is depicted in Figure 2. The data structure emu-
lates a mixed graph with two layers and multiple levels.
The first layer can be defined by a directed acyclic
graph (DAG) with no more than one parent for each
vertex, essentially a data tree with multiple branches
and levels, and with no cycles (Figure 2a). The second
layer is designed as an undirected graph (UDG) on the
lowest level of the DAG hierarchy. Horizontal or non-
hierarchical associations can also be reassigned from
one layer to another, external to the hierarchical struc-
ture. This data organization is depicted in Figure 2b and
corresponds to the topology that could represent a
given dataset (for example, protein-protein interaction
networks, ontologies, and so on). Flat networks, as illu-
strated in the left graph, can represent just one row
instance of the data structure (that is, not divided into
modules or layers). In contrast, hierarchical networks, as
illustrated in the right graph, support a modular organi-
zation and can exhibit the complete information. The
design of the software encapsulates the data structure
within subclasses of a graph blueprint that contains all
fields and methods common to both data types (Figure
2¢). This design is implemented in the Java core and is
extended to R to provide users and developers full
access to the outer level of the application. As an initial
demonstration of the software, next we provide a chunk

@ statistical computing

Network infe ence
Subnetwork identification

RedeR
callback engine

data interface

&“ nested networks

Time-course analysis
Clustering

Enrichment analysis
Differential networks
Topological analysis

* complete access to the Java app

client / server

#Add graph objects
>addGraph (port,g)

#Get graph objects
>g<-getGraph (port)

___ graphic interfface

* sub-network representation and clustering

* plugins coded in R and installed in Java
* extensible to standard R graph formats

R and Java.

~ dynamic libraries ~

Figure 1 Schematic representation of the RedeR callback engine. In the low-level interface, the Apache xmlrpc webserver [9] is used to link

* dynamic nested network layouts
* fully interactive




Castro et al. Genome Biology 2012, 13:R29 Page 3 of 11

http://genomebiology.com/2012/13/4/R29

>

data storage in RedeR @[b,e]
. kY

(O group of data elements yul e

[] data elements " “‘ data structure
> .
5 association between b
= | dataelements .
: ®a
D | nested assignments . ' b
-C - - - - " A .

AY A S
Q horizontal assignments . * *
< (i.e. out-edges) y
o ...
@) 0. ®son
. 1] ‘l‘ l‘ ‘l 1 \‘
1]
:‘ ] ," “ :' : ‘\
’ 1 ’ 1 Al
- ‘ M . S
_ y v o ¥ V4

)
Q 2] B [BkA67]
>

one row instance of the data structure

data abstraction

flat network hierarchical network ~ ,--=---- o
: i .
] I s sl
ordinary v O ) ]
representation 1o SN ! RedeR
L . ¥ b ,
a e . 2

data encapsulation and interface

fields

tree levels .
color Y3
shape § l—l
etc.

methods

setAssignment...)

getComponent(...) %

addPartner(...)
etc.

R/Java user

AN

R developer

internal states outside behaviors interface

Figure 2 Schematic representation of RedeR data packing and storing. (a) Data structure. The software emulates a mixed graph with two
layers and multiple levels in order to organize and manage the hierarchical associations. (b) Data abstraction. For the end-user, the data
abstraction corresponds to the network layout that represents the data structure. A flat network is shown to contrast an ordinary representation
(left) with RedeR hierarchical topology (right). (c) Data encapsulation: end-users and R developers have access to the outer level of the
application through the methods handled by the interface.

>g<-gtoy.rm(m =5, nmax = 30)

# Compute a hierarchical clustering using
standard R functions

> hc<-hclust (dist (get.adjacency(g)))

of R that generates modular structures as illustrated in
Figure 2b.

# Generate an igraph object (a toy example
with modular structures)



Castro et al. Genome Biology 2012, 13:R29
http://genomebiology.com/2012/13/4/R29

# Add graph to RedeR

> addGraph (rdp, 9)

> nesthc (rdp, hc,
cutlevel = 3, nlev =1)

This toy example maps one level of the hierarchy onto
the network topology. Additional levels and different
sections of the hierarchy can be mapped using the same
function (for further details, please see ‘nesthc’ docu-
mentation in the R package).

metric="rootdist”,

Dynamic layout modeling

One of the most versatile features of the software is the
ability to deal with nested network objects using
dynamic modeling, which makes it possible to represent,
for example, subnetworks and time-series onto the same
graph in a user-friendly routine. The layout uses force-
directed algorithms as described elsewhere [13,14]. Here
we adapted the method to deal with nested networks. In
force-directed graphs, each edge can be regarded as a
spring - with a given target length - and can either exert
a repulsive or attractive force on the connected nodes,
while nodes are analogous to mutually repulsive charged
particles that move according to the applied forces. In
RedeR, the layout is additionally constrained by the hier-
archical structure. For example, a nested node is con-
strained to its parent node by opposing forces applied
by the nest, which is regarded as a special node whose
nested objects can reach a local equilibrium indepen-
dently from other network levels. The layout is adjusted
by global options and evolves iteratively (and interac-
tively) until the system reaches the equilibrium state. It
can be started via either the graphical user interface or
the R command line, as for example:

# Start dynamic layout

> relax (rdp, ps=TRUE)

# Reset graph

> resetd (xdp)

The user can observe all steps of the layout optimiza-
tion process and, at any particular time, the process can
be driven interactively. In this sense, ‘dynamic’ not only
refers to the iteration steps required to layout a graph
by the force-direct algorithm but also is related to the
user’s interaction. This option is particularly useful for
additional control over containers and nested nodes in
hierarchical structures. We also added to the Java core
some popular static layout algorithms from open source
libraries [15] as a complementary option to the list of all
static layouts that can either be found in the R package
collections or, as usual, customized in R by the user.

R code deployment

R developers can deploy R code to RedeR by using the
‘PluginBuilder’ method. This feature provides a direct
way to extend existing R packages to the Java interface.

Page 4 of 11

The combination of R and Java code in a mark-up con-
struct gives rise to this extensible feature. The idea is
based on the successful framework used by the Sweave
package that mixes LaTeX syntax and R codes in order
to parse R text chunks within LaTeX documents. In
RedeR, the plugins are exported to the Java core by the
‘submitPlugin’ function. On the other side of the inter-
face, the software receives the request, stores the new
method in an XML document and mounts the plugin in
the application, including submenus in the main panel.
RedeR plugins have two main sections: methods and
add-ons. The ‘methods’ section can be regarded as the
plugin trigger. When installed in the Java app, this trig-
ger starts a given analysis by unfolding R expressions
wrapped in the methods. Add-ons use the same strategy,
but remain hidden in the app and can either load formal
functions or pass additional arguments to R (a code
sample is provided in RedeR vignette, plugin builder
tutorial).

Pre-processed data and documentation

The pre-processed data used in the case study were
obtained by the LIMMA package [16]. An R script that
reproduces the analysis is available in the supplements.
Additionally, the R package provides extensive docu-
mentation for all methods available in the software,
including description of the data objects, examples, and
a tutorial introducing the main functionalities.

Case study

In this section we demonstrate some essential features
of the software in two examples based on the re-analysis
of ChIP-on-chip and gene expression data from a gen-
ome-wide study describing ER binding sites in the
MCE-7 breast cancer cell line [6]. The ChIP-on-chip
dataset consists of a Bed file containing the genome
position of 3,665 unique ER binding sites, while the
gene expression data consist of 12 time-course Affyme-
trix U133Plus2.0 microarrays from MCF-7 cells stimu-
lated with estrogen for 0, 3, 6 and 12 h (all arrays in
triplicate).

Biological background

The purpose of the study by Carroll et al. [6] is the
identification of new authentic cis ER binding sites and
ER target genes in breast cancer cells. One of the chal-
lenges faced by the authors was that only a small frac-
tion (4%) of the ER binding sites mapped to promoter-
proximal regions, within 1 kb of the transcription start
sites. More frequently, ER binding sites are found at
considerable distance from the regulated gene and only
one-third of early estrogen up-regulated genes contain
ER binding sites within 50 kb of the transcription start
site. This finding has made it difficult to validate ER-



Castro et al. Genome Biology 2012, 13:R29
http://genomebiology.com/2012/13/4/R29

regulated candidate genes as there may be multiple
genes within the 100 kb interval of the ER binding site
and because the usual association of transcription factor
binding sites and promoter regions occurs in only a
minority of cases.

Hierarchical and modular organization in gene co-
expression networks

The aim of this example is to examine the hierarchical
structure of co-expressed gene network modules. A
step-by-step description of the analysis is provided in
Figure 3. Three standard R objects are used: a data
frame object with many gene attributes inferred from
the Carroll et al. [6] dataset (for example, differentially
expressed genes, log fold change values and ER binding
site distance), the corresponding gene expression matrix
and an igraph object obtained by co-expression analysis
on genes differentially expressed at 3 h (further details
on the pre-processed data can be found in Additional
file 1).

Page 5 of 11

Figure 4a shows a hierarchical clustering obtained on
the adjacency matrix and in Figure 4b we display two
levels of such hierarchical organization onto the co-
expression gene network. For each gene its size indicates
the proximity to the nearest ER binding site (large nodes
correspond to genes close to the ER binding sites) and the
colors represent the log2 differential expression values.

Taken together, this case study not only illustrates
how to constrain the network topology by a hierarchical
structure, but also raises an interesting biological obser-
vation. The identification of co-regulated gene modules
is one of the key steps towards understanding genetic
regulatory networks. However, similar patterns in gene
expression modules are not directly associated with a
common mechanism of gene regulation. The identifica-
tion of co-regulated modules is far from trivial and this
case study provides a simple workflow to inspect in
detail potentially co-expressed gene modules that share
binding sites for the same transcription factor. The soft-
ware permits visualizing these individual gene modules,

#--- Step 1: load RedeR
library(RedeR)

rdp <- RedPort()
calld(rdp)

data(ER.deg)

dt <- ER.deg$dat

sg <- ER.deg$ceg

#--- Step 3: map the data frame to the graph
sg <- att.mapv(sg, dat=dt, refcol=1)

sg <- att.setv(sg, from="Symbol", to="nodeAlias")

#--- Step 5: add graph to the app
addGraph(rdp,sg)

he <- helust(dist(get.adjacency(sg, attr="weight")))

#--- Step 8: assign edges to containers
mergeOutEdges(rdp,nlev=2)

relax(rdp)

#--- Step 10: add color and size legends
addLegend.size(rdp, sg, title="bd site distance (kb)")

#--- Step 11: reset graph
resetd(rdp)

BOX 1: Hierarchical and modular organization in co-expressed gene networks.

#--- Step 2: get a data frame and an igraph object (i.e. results from differential and co-expression analyses)

#--- Step 4: set attributes to RedeR (i.e. gene symbols, fold change and ER binding site distance to TSS)

sg <- att.setv(sg, from="logFC t3...t10", to="nodeColor", breaks=seq(-2,2,0.4), pal=2)
sg <- att.setv(sg, from="ERbdist", to="nodeSize", nquant=10, isrev=TRUE, xlim=c(5,40,1))

#--- Step 6: compute a hierarchical clustering using standard R functions on the adjacency matrix

#--- Step 7: superimpose the dendrogram structure onto the network
nesthe(rdp, he, cutlevel=3, nmemb=5, cex=0.3, labels=V(sg)$nodeAlias)

#--- Step 9: relax the network and fine-tune layout interactively!

addLegend.color(rdp, sg, title="diff. gene expression (logFC)")

Figure 3 Hierarchical and modular organization in co-expressed gene networks. R script describing step-by-step all intermediate R objects
required to obtain the results presented in the first case study. TSS, transcriptional start site.




Castro et al. Genome Biology 2012, 13:R29 Page 6 of 11
http://genomebiology.com/2012/13/4/R29

e N
Module A Module B Module C Maodule D
— p—— B e e e e e e e
- R ' H
- [ ' '
v (] ' N i
¥ ‘ | '
! 1 : :
) ) ' '
S [ )
(I S o R b e b s s s e Sae S B e el e S :
- - - - - - - - oy
B . s
’ Module D %
- - emom om g,
. - Module C .
1 s L4 RERG CNOT8 'y
1
N . ’ Coorniar BB )
1 : €xcLi2 1
| e E.JGALNTJ ' CALCR UAgR3 .GLA 1
L
1 TFF1 POCIB] OR1 - Q KinAG226L '
1 PLOD2 FAM1108 ! 1
| 1 . ]
1 1
1 []
. ‘
' ’
7 A Y
1 Y
' ‘+
A -~
. 4
. ® m mmmmw
~ . ’
- " m m memememo= ™
o=,
+° ModuleB "« Module A
A T A} - -
/ PSCA ™ = - IS
[ ] | | L Y
1 GLTPDY | 1 ’ 1
1 N y 1 ! 1
— )
] 1 1
1 1 i [ ]
A}
] ] 4
A .
‘ ’ - meom
- L4
; ~ -
node size ~ o mmem node color
oose..... o m
T 3RS daicsdeeecdddd
ER bd site distance (kb) diff. gene expression (logFC)

Figure 4 Hierarchical networks. (a) Dendrogram derived from complete-linkage clustering analysis using Euclidean distance on the gene
expression matrix of all genes differently expressed at 3 h (related to 0 h) in estrogen-treated MCF-7 cells (Carroll et al. [6] dataset). (b)
Hierarchical network obtained by superimposing the dendrogram onto the corresponding co-expression gene network. The co-expression
associations were computed for the same set of genes (for additional details on the pre-processed data please see Additional file 1 and Figure
3). Node coloring depicts differential expression as log2 fold-change (logFC) and node size indicates the kilobase distance of the transcription
start site to the nearest ER binding site. Out-edge width represents the sum of all edges between modules divided by the total possible edges.

displaying each individual component and the connec- HPRD database [17] as prior information, in Figure 5
tions between them, as well as the hierarchical associa- we describe a workflow that maps to the human inter-

tions between modules and genes. actome all differentially expressed genes inferred in

estrogen-treated MCF-7 cells (that is, genes differen-
Nested structures in time-course gene expression tially expressed at 3, 6 and 12 h related to 0 h), and
subnetworks for each time point we select the largest subnetwork in

Another common approach to analyze complex biolo- order to demonstrate how RedeR represents nested
gical datasets is the use of prior knowledge. Using the  structures.



Castro et al. Genome Biology 2012, 13:R29
http://genomebiology.com/2012/13/4/R29

Page 7 of 11

BOX 2: Nested structures in time-course gene expression subnetworks.

#--- Step 1: get a data frame and an interactome
data(ER.limma)

data(hs.inter)

dt <- ER.limma

gi <- hs.inter

#--- Step 2: extract a subgraph and set attributes to RedeR (i.e. logFC of t3-t0 contrast)
#...p.s. not all genes are expected to be present in the interactome!

gt3 <- subg(g=gi, dat=dt[dt$degenes.t3!=0], refcol=1)

gt3 <- att.setv(g=gt3, from="Symbol", to="nodeAlias")

gt3 <- att.setv(g=gt3, from="logFC.t3...t0", to="nodeColor", breaks=seq(-2,2,0.4), pal=2)

#--- Step 3: extract another subgraph and set attributes to RedeR (i.e. logFC of t6-t0 contrast)
gté <- subg(g=gi, dat=dt[dt$degenes.t6!=0,], refcol=1)

gté <- att.setv(g=gt6, from="Symbol", to="nodeAlias")

gté <- att.setv(g=gt6, from="logFC.t6...t0", to="nodeColor", breaks=seq(-2,2,0.4), pal=2)

#--- Step 4: extract another subgraph set attributes to RedeR (i.e. logFC of t12-t0 contrast)
gt12 <- subg(g=gi, dat=d{[dt3degenes.t12!=0,], refcol=1)

gt12 <- att.setv(g=gt12, from="Symbol", to="nodeAlias")

gt12 <- att.setv(g=gt12, from="logFC.t12...t0", to="nodeColor", breaks=seq(-2,2,0.4), pal=2)

#--- Step 5: add subgraphs to the app

addGraph(rdp, gt3, gcoord=c(10,25), gscale=20, isNest=TRUE, theme='tm1', zoom=30)
addGraph(rdp, gt6, gcoord=c(20,70), gscale=50, isNest=TRUE, theme="tm1', zoom=30)
addGraph(rdp, gt12, gcoord=c(70,55), gscale=80, isNest=TRUE, theme="tm1', zoom=30)

#--- Step 6: nest subgraphs (i.e. overlap time-series)

nestNodes(rdp, nodes=V(gt3)$name, parent="N1", theme="tm2")
nestNodes(rdp, nodes=V(gt6)$name, parent="N2", theme="tm2")
nestNodes(rdp, nodes=V(gt3)$name, parent="N4", theme="tm3")

#--- Step 7: assign edges to containers
mergeOutEdges(rdp,nlev=2)

#--- Step 8: relax the network
relax(rdp,50,400)

scl <- gt3$legNodeColor$scale
leg <- gt3$legNodeColor$legend

#--- Step 10: select a gene
selectNodes(rdp,"RET")

#--- Step 11: select and get nodes in a container
selectNodes(rdp,"N5")
sg <- getGraph(rdp, status="selected")

#--- Step 12: reset graph
resetd(rdp)

#--- Step 9: add node colour legend (ps. same scale for all graphs)

addLegend.color(rdp, colvec=scl, labvec=leg, title="diff. gene expression (logFC)")

Figure 5 Nested structures in time-course gene expression subnetworks. R script describing step-by-step all intermediate R objects
required to obtain the results presented in the second case study. logFC, log2 fold-change.

Accordingly, among the possible outcomes one may
expect to see gene modules that are (i) induced early
after stimulus, (ii) continuously stimulated/repressed, or
(iii) respond later to the treatment. Given the partial- or

non-overlapped time-course responses and the different
module sizes, such a scenario can give rise to a complex
data structure. Figure 6 shows these modules as a chain
of nested subnetworks. Two observations are evident



Castro et al. Genome Biology 2012, 13:R29
http://genomebiology.com/2012/13/4/R29

Page 8 of 11

12h | B n

3h SRSEERREE8288
SEI533885888%
diff. gene expression (logFC)
RND1 L
Giro7 RET PRSR1 [ ] P
M"M(‘A\‘l %CK L] 'Y L X 2
o [ o
) o) ® ®
e Y ®
o & »
9. ] (R J ®
6h % »
)
o - - - -
° o ] o
[ ] bk L [
o o &l/g1e .
@ . ®
o> Bt o
L]
° x : oo b Y
.
& 9 * [ . 1
LA s Je
L] s | L ) om = =
° 4 _cavl LR |
* L 2 | 1 Gray RNOL |
- [ ) o
4" o ok W LA L} ¥ 1
] jakz @ LN |
o4 piginl ® | ® 3:& PIRL Y
1 . . ‘ a2
° ' 8 1 o/ -ty
g ey . Y - m i
‘ ARAPL '
L] - ‘

Figure 6 Nested subnetworks. Genes differentially expressed in estrogen-treated MCF-7 cells at 3, 6 or 12 h (relative to 0 h; Carroll et al. [6]
dataset) were mapped to the human interactome (HPRD database [17]) and for each time point the largest subnetwork was selected in order
to demonstrate how RedeR represents nested structures (additional details in Figure 5). Node coloring depicts differential expression as log2
fold-change (logFQ). The insets correspond to the overlap between consecutive time points.

from this comparison across time series: as time goes by
the subnetwork gets bigger but the core remains nearly
the same. Such abstracted structure shows that the early
response differentially expressed subnetworks are nested
to the subsequent and larger gene modules, suggesting a

stepwise and progressive gene expression response in
estrogen-treated MCEF-7 breast cancer cells. Additional
file 1 provides supporting material to extend this case
study to more advanced scenarios further illustrating the
type of questions that can be explored by using RedeR.

Table 1 RedeR in the context of gold-standard network visualization software and R

RedeR Cytoscape Graphviz igraph graph

Software design

Hierarchical data structure® YesP No YesP No No

Data abstraction® Modular® Flat Layered® Flat Flat

Data encapsulation® Yes Yes No No No

Core engine Java Java DOT C R

R interface R <-> Java R -> Java R <- DOT R<-C Pure R

Deployment to R Embedded External External Embedded Embedded

Plugin coding language R Java DOT language© cd -
Selected features

Scalability on nested networks® Yes Nof Yes No? No?

Interactive graph handling Yes Yes No Partially" No

Dynamic layouts Yes! No No No No

Comparison across multiple nested networks Yes No No No No

Panels’ Yes No No No No

2For further definitions, please see the Implementation section and Figure 2. ®In RedeR, the hierarchy is encapsulated, so users deal with methods. In Graphviz
users implement methods by themselves in DOT language. This difference has an important effect on the ability of the software to deal with modular structures,
such as recycling data objects used in subnetworks. The plugin infrastructure is available for Graphviz. “Provides a C library to be used in third-party
applications. Able to accommodate increasing amounts of nested objects. fin Cytoscape, nested networks are represented as images inside nodes. For each
nested network one image is required. Images are not scalable, so the hierarchy cannot be extended to other levels. °In these applications, modules can be
represented by layering images, which is essentially a drawing process. "According to the authors, the interactive features are not very well developed at this
stage. 'In RedeR, the dynamic layout is also extensible to the nested structures. 'This feature provides support for multiple panels in the same graph, representing

subnetworks, and so on.



Castro et al. Genome Biology 2012, 13:R29
http://genomebiology.com/2012/13/4/R29

Benchmark

RedeR in the context of gold-standard software in the
same field

There are other excellent tools to represent and analyze
biological networks, and each has their own unique fea-
tures. Table 1 describes RedeR in the context of gold
standard software in the same field. In R three packages

Page 9 of 11

provide standard software infrastructures to deal with
graphs: igraph, graph and Rgraphviz [18-21]. However,
the rendering process of these packages relies on R’s
internal plotting libraries, which lack interactive capabil-
ities. Some simple interactive options are available in
igraph, but according to the authors these features are
not very well developed at this stage. In contrast, RedeR

8 image rendering data tranfers + image rendering
L‘N) T] e baseline O RedeR
o igraph O igraph/tkplot
o A Rgraphviz/Graphviz ~ © RCytoscape/CytoscapeRPC
o __
(@]
AN
A~ o "
(7)) ~ | first 10 secs
"
o 3 Ol
E w0 " o
—_ E o4
- -+
e
(@) e
cC O ®
= 9O _ S
T O
m b
o o- s
ol LI LI L
—J 5 50 500 5000
8 —_ Network size (n vertices)
Te)
O —

5000
Network size (n vertices)

Figure 7 Performance of six graph tools loading scale free networks of increasing size. Fach point in the plot corresponds to the average
elapsed time (in seconds) required to load one of these networks. The inset shows the first 10 s of the same tests (+ standard deviation, n =
10). The networks were obtained by the function ‘barabasi.game’ available in the R package igraph [19]. Briefly, each network has @ vertices and
¢ edges generated by a step-model where the first step generates a single vertex and no edge; the subsequent steps generate one vertex
linked to an old vertex according to a probability distribution proportional to the degree of the nodes; therefore, in the end there are @-1
edges. The networks were obtained and set prior to the performance tests, and only with minimum information in order to guarantee equal
conditions among the software (that is, without any graph attribute, such as color, size, and so on). Versions tested: R version 2.14.1, RedeR_1.0.3,
igraph_0.5.5-4, RCytoscape_1.4.3, Cytoscape 2.8.1, CytoscapeRPC 1.7, Rgraphviz_1.32.0. Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit).
Hardware: MacPro4.1 2 x Quad-core Intel Xeon 226 GHz, 6 GB RAM. The source code used to run the complete analysis is available in
Additional files 2 and 3.




Castro et al. Genome Biology 2012, 13:R29
http://genomebiology.com/2012/13/4/R29

provides a robust graph-handling engine that is directly
extensible to R objects; therefore, those used to work
with graphs in R can easily become familiar with RedeR.

Another option is the package RCytoscape [22]. This
R package implements via CytoscapeRPC [23] an inter-
face to Cytoscape [5], which can be regarded as a gold
standard software for network visualization. Although
robust and easy to use, Cytoscape is designed mainly to
deal with flat network topology, which does not accom-
modate increasing amounts of nested objects. For exam-
ple, using flat topology to represent a chain of nested
networks, the number of graphs would increase propor-
tionally with the network levels. Using RedeR, the job
can be performed in just one graph (Figure 2b, data
structure section). In this sense, RedeR constitutes a
new option to assess networks with multiple levels or
hierarchies, and this is a surprisingly common situation
in biological networks.

Performance

In order to benchmark shared functionalities among
these packages, we tested the performance for loading
scale-free networks of increasing size, up to the human
interactome scale. The results are shown in Figure 7
and the R script used to run the complete analysis is
available in Additional files 2 and 3. Although any
benchmark is restricted [24], it is clear from these
results that RedeR performs very well, even compared to
packages that only deal with image rendering. One
remarkable aspect is that RedeR maintains its level of
performance when tested by larger networks, only com-
parable to the baseline, which is a simple test to assess
the speed of R for plotting dots and lines (that is, image
rendering). The software continues to track the baseline,
but transfers network information at the same time (Fig-
ure 7, inset). Another remarkable aspect is observed at
the maximum loading time. For example, while RedeR
took 4.8 s (+ 0.2 s) to load a network with 16,384
nodes, RCytoscape/CytoscapeRPC required 2,391.3 s (+
45.7 s) to load the same graph (further details in the
legend of Figure 7 and Additional files 2 and 3).

Conclusions

In this work we introduced RedeR, a software designed
for the representation of nested and hierarchical biolo-
gical networks. The ability to perform advanced visua-
lization tightly integrated to R allows RedeR to take
full advantage of R packages for network analysis and
statistical computing. Likewise, RedeR is an ongoing
project that provides a comprehensive and entirely
new framework to read, write and manipulate R code
mixed to a Java data structure. Its architecture allows
the creation of R-based plugins with minimum effort,
potentially extending the existing R packages to

Page 10 of 11

different communities of users interested in studying
biological networks.

Rather than analyzing a single network, current
research focuses on differences in networks, re-wiring
events, as well as higher-level, modular characteristics of
networks. These can be hard to visualize in standard
tools. RedeR implements a framework for network com-
parison and module representation by introducing a
hierarchy of ‘containers’ in which many networks and
their connections can be visualized at the same time.
We anticipate that our software will be particularly use-
ful to assess datasets that demand detailed analysis of
inter- and intra-modular associations.

System requirements

R (version>=2.14) and Java Runtime Environment (ver-
sion>=5). Available since Bioconductor 2.9.

Additional material

Additional file 1: Pre-processed data analysis. PDF document
describing the pre-processed data analysis, including three examples
illustrating how RedeR can be integrated with other R packages.

Additional file 2: Benchmark source code. R script used to run the
benchmark analysis.

Additional file 3: Complementary benchmark source code. R script
with complementary R functions required in the benchmark.

Abbreviations
ChIP: chromatin immunoprecipitation; DAG: directed acyclic graph; ER:
estrogen receptor.

Acknowledgements

We thank Professor Sir Bruce Ponder for his support. We also thank all FM
lab members that kindly contributed with suggestions during the
development of the R package. We acknowledge the support of The
University of Cambridge, Cancer Research UK and Hutchison Whampoa
Limited. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Authors’ contributions

Conceived the project: MAAC KBM FM. Supervised the project: KBM FM;
Conceived and designed the software: MAAC XW FM. Implemented the
software: MAAC. Implemented the analysis pipeline: MAAC XW. Conceived
the case studies: MAAC XW MF KBM FM. Wrote the paper: MAAC KBM FM.
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 6 February 2012 Revised: 23 March 2012
Accepted: 24 April 2012 Published: 24 April 2012

References

1. Luo F, Yang Y, Chen CF, Chang R, Zhou J, Scheuermann RH: Modular
organization of protein interaction networks. Bioinformatics 2007,
23:207-214.

2. Han JD: Understanding biological functions through molecular networks.
Cell Res 2008, 18:224-237.

3. Aittokallio T, Schwikowski B: Graph-based methods for analysing networks
in cell biology. Brief Bioinform 2006, 7:243-255.


http://www.biomedcentral.com/content/supplementary/gb-2012-13-4-r29-S1.???
http://www.biomedcentral.com/content/supplementary/gb-2012-13-4-r29-S2.???
http://www.biomedcentral.com/content/supplementary/gb-2012-13-4-r29-S3.???

Castro et al. Genome Biology 2012, 13:R29 Page 11 of 11
http://genomebiology.com/2012/13/4/R29

4. Barabasi AL, Gulbahce N, Loscalzo J: Network medicine: a network-based
approach to human disease. Nat Rev Genet 2011, 12:56-68.

5. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T: Cytoscape 2.8: new
features for data integration and network visualization. Bioinformatics
2011, 27:431-432.

6. Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS,
Keeton EK, Fertuck KC, Hall GF, Wang Q, Bekiranov S, Sementchenko V,
Fox EA, Silver PA, Gingeras TR, Liu XS, Brown M: Genome-wide analysis of
estrogen receptor binding sites. Nat Genet 2006, 38:1289-1297.

7. R Development Core Team: R: A Language and Environment for
Statistical Computing. Vienna: R Foundation for Statistical Computing;
2011,

8. NetBeans IDE 6.9 Development Environment. [http://netbeans.org/].

9. Apache xmlrpc Webserver. [http://ws.apache.org/xmlrpc/].

10. JRI Library Interface. [http//www.rforge.net/JRI/].

11. Lang DT: XMLRPC: Remote Procedure Call (RPC) via XML in R.[http://
www.omegahat.org/XMLRPC/].

12. Urbanek S: rJava: Low-level R to Java interface.[http://www.rforge.net/
rJava/].

13. Brandes U: Drawing graphs: methods and models. In Lecture Notes in
Computer Science. Volume 2025. Edited by: Kaufmann M, Wagner D.
Heidelberg: Springer; 2001:71-86.

14.  Fruchterman TMJ, Reingold EM: Graph drawing by force-directed
placement. Software Practice Experience 1991, 21:1129-1164.

15.  Java Universal Network/Graph Framework. [http://sourceforge.net/
projects/jung/].

16.  Smyth GK: Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat Appl Genet Mol Biol
2004, 3:Article3.

17.  Prasad TS, Kandasamy K, Pandey A: Human Protein Reference Database
and Human Proteinpedia as discovery tools for systems biology. Methods
Mol Biol 2009, 577:67-79.

18. Le Meur N, Gentleman R: Analyzing biological data using R: methods for
graphs and networks. Methods Mol Biol 2012, 804:343-373.

19.  Csardi G, Nepusz T: The igraph software package for complex network
research. R package version 0.5.5-2 [http://cran.r-project.org/web/packages/
igraph/index-html].

20. Gentleman R, Whalen E, Huber W, Falcon S: graph: a package to handle
graph data structures. R package version 1.30.30 [http://bioconductor.org/
packages/release/bioc/html/graph.html].

21. Gentry J, Long L, Gentleman R, Falcon S, Hahne F, Sarkar D, Hansen K:
Rgraphviz: Provides plotting capabilities for R graph objects. R package
version 1.30.31 [http://bioconductor.org/packages/release/bioc/html/
Rgraphvizhtml].

22. Shannon P: RCytoscape. R package version 1.3.0 [http://bioconductor.org/
packages/release/bioc/html/RCytoscape.html].

23. Bot JJ, Reinders MJ: CytoscapeRPC: a plugin to create, modify and query
Cytoscape networks from scripting languages. Bioinformatics 2011,
27:2451-2452.

24. Norel R, Rice JJ, Stolovitzky G: The self-assessment trap: can we all be
better than average? Mol Syst Biol 2011, 7:537.

doi:10.1186/gb-2012-13-4-r29

Cite this article as: Castro et al. RedeR: R/Bioconductor package for
representing modular structures, nested networks and multiple levels
of hierarchical associations. Genome Biology 2012 13:R29.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central



http://netbeans.org/
http://ws.apache.org/xmlrpc/
http://www.rforge.net/JRI/
http://www.omegahat.org/XMLRPC/
http://www.omegahat.org/XMLRPC/
http://www.rforge.net/rJava/
http://www.rforge.net/rJava/
http://sourceforge.net/projects/jung/
http://sourceforge.net/projects/jung/
http://cran.r-project.org/web/packages/igraph/index.html
http://cran.r-project.org/web/packages/igraph/index.html
http://bioconductor.org/packages/release/bioc/html/graph.html
http://bioconductor.org/packages/release/bioc/html/graph.html
http://bioconductor.org/packages/release/bioc/html/Rgraphviz.html
http://bioconductor.org/packages/release/bioc/html/Rgraphviz.html
http://bioconductor.org/packages/release/bioc/html/RCytoscape.html
http://bioconductor.org/packages/release/bioc/html/RCytoscape.html

	Abstract
	Rationale
	Overview of the software
	User-friendly interface in R
	Unique data structure for hierarchical networks
	Dynamic layout modeling
	R code deployment
	Pre-processed data and documentation

	Case study
	Biological background
	Hierarchical and modular organization in gene co-expression networks
	Nested structures in time-course gene expression subnetworks

	Benchmark
	RedeR in the context of gold-standard software in the same field
	Performance

	Conclusions
	System requirements
	Acknowledgements
	Authors' contributions
	Competing interests
	References

