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Abstract

ChIP-seq is a powerful method for obtaining genome-wide maps of protein-DNA interactions and epigenetic
modifications. CHANCE (CHip-seq ANalytics and Confidence Estimation) is a standalone package for ChIP-seq
quality control and protocol optimization. Our user-friendly graphical software quickly estimates the strength and
quality of immunoprecipitations, identifies biases, compares the user’s data with ENCODE’s large collection of
published datasets, performs multi-sample normalization, checks against quantitative PCR-validated control regions,
and produces informative graphical reports. CHANCE is available at https://github.com/songlab/chance.

Rationale
The foremost question that challenges an experimental-
ist about their ChIP-seq is, ‘did my experiment work?’
CHANCE (CHip-seq ANalytics and Confidence Estima-
tion) is a software package that provides quantitatively
rigorous yet intuitive answers to this fundamental ques-
tion in the following ways:

1. CHANCE assesses the strength of immunoprecipi-
tation (IP) enrichment to identify potentially failed
experiments. CHANCE identifies insufficient sequen-
cing depth, PCR amplification bias in library pre-
paration, and batch effects.
2. CHANCE identifies biases in sequence content and
quality, as well as cell-type and laboratory-dependent
biases in read density. Read-density bias reduces the
statistical power to distinguish subtle but real enrich-
ment from background noise [1-3]. CHANCE visua-
lizes base-call quality and nucleotide frequency with
heat maps. Furthermore, efficient techniques bor-
rowed from signal processing uncover biases in read
density caused by sonication, chemical digestion, and
library preparation.
3. CHANCE cross-validates enrichment with pre-
vious ChIP-qPCR results. Experimentalists frequently
use ChIP-qPCR to check the enrichment of positive
control regions and the background level of negative

control regions in their immunoprecipitation DNA
(IP) relative to input DNA (Input). It is thus impor-
tant to verify whether those select regions originally
checked with PCR are captured correctly in the
sequencing data. CHANCE’s spot-validation tool pro-
vides a fast way to perform this verification.
CHANCE also compares enrichment in the user’s
experiment with enrichment in a large collection of
experiments from public ChIP-seq databases.

Despite having different goals, some software packages
partially overlap with CHANCE in functionality: htSeq-
Tools [4] is an R package with routines for coverage esti-
mation, peak calling, and downstream analysis of ChIP-
seq data. Interestingly, its use of Lorenz curves to estimate
sample coverage is similar in mathematical principle to
the signal-to-noise ratios previously used by us and others
to construct estimates of the size and quality of the back-
ground fraction of IP [1,2]. By contrast, CHANCE pro-
vides statistics on coverage, as well as percentage
enrichment for signal and multi-sample scaling. Other
software visualizes the distribution of quality scores and
base calls that may be useful in choosing parameters for
mapping reads to a reference genome [5-8]. Some pro-
grams can also trim and filter reads based on base-call
quality metrics [9-12]. These programs nevertheless do
not address biases in read density that can affect the relia-
bility of called peaks and do not estimate the strength of
IP enrichment. CHANCE not only incorporates the func-
tionality of other software, but also has novel features that
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can significantly facilitate the quality control step of ChIP-
seq analysis.
While Python scripts and Java applications are available

for correcting read density for mappability and GC con-
tent biases [3], to our knowledge, no publicly available
software today identifies biases that may arise due to
sonication, chemical digestion, or laboratory-specific pro-
tocols. None of the aforementioned software has more
than 1/4 of CHANCE’s features (see the feature compari-
son table in Additional file 1). Of the ten software
packages compared, seven require programming knowl-
edge, and three are sequencing platform specific. In con-
trast, CHANCE has an intuitive graphical interface and
works with reads from any platform. CHANCE runs on
Windows, Mac OS, and Linux and does not require any
programming or knowledge of statistics. It is a compre-
hensive, statistically rigorous application: it provides a
bird’s-eye view of the quality of a ChIP-seq data set, it
allows experimentalists to compute multiple quality
metrics, and it generates informative images as output
graphical reports and figures. Only CHANCE provides a
comprehensive suite of ChIP-seq quality controls in a
user-friendly graphical interface.

Results
Data sets CHANCE can analyze
CHANCE works with reads mapped to a reference gen-
ome from IP and control (Input) samples. It can import
reads in BED, tagAlign [13], SAM, and BAM [14] for-
mats, as well as BOWTIE [15] output. Its interactive
plots include a suite of plotting tools and an export uti-
lity to produce informative graphics in most standard
formats. In addition to interactive plots, CHANCE also
generates a text log of the session containing a summary
of the statistical tests performed.

Estimating the strength of IP enrichment
IP enrichment strength is important for calling robust
peaks that correspond to transcription factor (TF) bind-
ing sites or epigenetic modification sites. To estimate
the IP strength, CHANCE attempts to decompose the
population of IP reads into two distinct components:
those pulled down by the antibody, and background. To
accomplish this task, CHANCE uses signal extraction
scaling (SES), which is based on order statistics [1]. SES
estimates the percentage of the IP data enriched for bio-
logical signal, the coverage of IP reads corresponding to
DNA fragments pulled down by the antibody, and a
scaling factor for properly normalizing IP and Input
together. The level of IP enrichment can be used to
classify whether an experiment was successful. We have
trained CHANCE on thousands of ChIP-seq samples
derived from the ENCODE repository (see Materials
and methods). CHANCE reports a q-value for the IP

enrichment level based on this training data and uses
the q-value to identify potentially failed experiments.
In addition to assessing the strength of IP, it is also

important to monitor the levels and sources of different
biases present in the data. Identifying these biases is
useful for optimizing experimental protocols. During the
estimation of IP strength, CHANCE thus also detects
several forms of bias. Figure 1 shows typical summary
statements, and Figure 2 shows graphical representa-
tions of IP strength estimation for several samples, pro-
duced by CHANCE. Figures 1a,b and 2a,b are samples
with strong ChIP enrichment, but also with substantial
biases; Figures 1c and 2c show a successful low bias
ChIP; and, Figures 1d and 2d correspond to a very weak
ChIP. Figures 1a and 2a show the CHANCE outputs
for a H3K4me3 ChIP-seq in human embryonic stem
cells (Gene Expression Omnibus (GEO) accession
GSM727572). Although CHANCE finds significant
enrichment in IP relative to Input, it also detects that
almost 60% of the genome has zero coverage, indicating
insufficient sequencing depth in the IP. Figures 1b,c and
2b,c show results for a H3K4me3 ChIP-seq in neural
stem cells (NSCs) from the murine sub-ventricular zone
obtained from the Lim lab at University of California,
San Francisco (UCSF) [1]. In Figures 1b and 2b,
CHANCE finds significant enrichment in the IP, but it
also detects a significant bias in the Input channel - that
is, it is found that almost 40% of the reads map to less
than 0.001% of the genome. In this data set, the average
read density is about 10 reads/kbp; however, for less
than 0.001% of the genome, the read density reaches
over 50,000 reads/kbp. This kind of outlier coverage
often indicates a large number of duplicate reads, which
can arise from PCR amplification bias during library
preparation [16]. Indeed, after de-duplicating the set of
reads and re-running CHANCE, we see a greater frac-
tion of reads corresponding to biological signal, as
shown in Figures 1c and 2c. In Figures 1d and 2d, we
show an example of a ChIP-seq experiment for CARM1
in human embryonic stem cells (GEO accession
GSM801064), where the IP sample is statistically indis-
tinguishable from Input.
CHANCE can also compare two or more IP samples

(for example, samples obtained before and after knock-
ing down a protein of interest) by constructing a con-
sensus profile based on signal processing techniques
designed to identify regions of mutual enrichment
[17-19] (see Materials and methods). The samples are
then normalized to the consensus using SES, and the
statistics on sample pairwise differential enrichment as
well as scaling factors for multi-sample comparison are
reported. Figure 3 gives an example of CHANCE output
for multi-IP comparison. Figure 3a,c,e demonstrates
such an analysis by comparing H3K4me1, H3K4me2,
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H3K4me3, and H3K36me3 in human embryonic stem
cells (H1 HESCs), from Broad Institute tracks available
in the ENCODE repository. Figure 3a is a summary
statement of the statistical significance of the difference
between a given sample and the consensus; Figure 3c
provides a pairwise estimate of the fraction of the gen-
ome differentially enriched for a given sample; and

Figure 3e gives a graphical representation of the multi-
IP comparison.
It is well known that sending samples to a sequencing

facility at different times can result in unwanted batch
effects. To facilitate the detection of such variability,
CHANCE automatically identifies potential batch effects
in replicate data. For example, Figure 3b,d,f shows a
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Figure 1 Statistical summary of IP enrichment strength. Each panel shows a summary statement of IP strength produced by CHANCE for a
different sample. For each sample, CHANCE summary statements include: the statistical significance of IP enrichment, or the lack thereof; pie charts
estimating the percentage of reads corresponding to DNA fragments pulled down by the antibody and the percentage of the genome enriched
for biological signal; and, warning statements of possible bias or lack of sequencing depth. (a) The analysis results for H3K4me3 in human
embryonic stem cells (HESCs; GEO GSM727572). Although this sample shows significant enrichment for signal, it also displays a possible lack of
sufficient sequencing depth, which will result in a high false negative rate in peak detection. (b) The analysis results for H3K4me3 in mouse neural
stem cells (NSCs). This sample shows decent enrichment, but CHANCE also detects an amplification bias in the input channel and alerts the user.
(c) The results for the same sample as in (b) after bioinformatic de-duplication of reads. De-duplication has suppressed the amplification bias,
recovering biological signal in the IP. The warning message has disappeared after de-duplication. (d) The summary statement for CARM1 in HESCs
(GEO GSM801064). For this sample, the IP appeared extremely weak; CHANCE is unable to produce pie chart enrichment estimates as in the
previous samples, but it nevertheless reports the false discovery rate (FDR) associated with the test for enrichment. There are four false discovery
rates reported, each estimated on a separate subset of training data. Their abbreviations are as follows, HC: histone mark - cancer tissue; HN:
histone mark - normal tissue; TC: transcription factor binding site - cancer tissue; TN: transcription factor binding site - normal tissue.
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four-sample normalization of two batches (A and B) and
two technical replicates (rep1 and rep2) for H3K27ac in
murine whole limb from the Ahituv lab at UCSF (data not
published). The batch effect can be seen in graphical form
in Figure 3f, where batch A and batch B appear to cluster
together. In Figure 3d, the batch effect is further quantified
by the estimates for the percentage of the genome

differentially enriched amongst the four samples. In parti-
cular, in Figure 3d, CHANCE was unable to detect statisti-
cally significant differential enrichment between technical
replicates; by contrast, it found 10 to 12% of the genome
to be differentially enriched between the samples from dif-
ferent batches, suggesting a non-negligible batch effect
between A and B. CHANCE thus provides a powerful tool
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Figure 2 Graphical summary of IP enrichment. In addition to summary statements, CHANCE produces graphical visualizations of IP strength
by separating background regions from ChIP-enriched regions. For a complete discussion on the statistical interpretation of these plots, see [1].
Briefly, points on the x-axis correspond to percentages of the genome, and points on the y-axis correspond to percentages of the total number
of reads. The point at which the distance between the IP and Input percentages is maximized is denoted by the green line; the greater the
separation between IP and Input at this point, the better the IP enrichment. The shapes of the two curves also provide useful information about
the data. (a) The IP curve for H3K4me3 in human embryonic stem cells (HESCs; GEO GSM727572) stays near 0 until it reaches 0.6, indicating that
60% of the genome did not have sufficient coverage in the IP channel. CHANCE detects this insufficient sequencing depth and indicates the
percentage of uncovered genome by a black line. (b) For H3K4me3 in mouse neural stem cells (NSCs), CHANCE indicates amplification bias with
a turquoise line, identifying over 60% of the reads mapping to a small percentage of the genome. (c) The same sample as in (b) is shown after
de-duplication. CHANCE does not detect any amplification bias after de-duplication. (d) This figure exemplifies a weak IP (CARM1 in HESCs; GEO
GSM801064), where the IP and Input curves are not well separated.
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Figure 3 Multi-IP normalization. This figure shows CHANCE output for the multi-IP normalization module. (a-d) CHANCE produces a summary
statement (a-b), a pairwise sample differential enrichment matrix (c-d), and a graphical representation of the normalization process. The graphical
representation gives the same type of plot as in IP strength estimation for each IP sample, as well as the consensus of the IP samples; see Materials
and methods. The summary statement quantifies the graphical representation by giving the statistical significance of the difference of each sample
from the consensus. The differential enrichment matrix computes the percentage of the genome differentially enriched between all pairs of samples,
using the same technique for IP-Input comparison used in IP strength estimation; see Materials and methods. (a,c,e) Multi-IP normalization of
H3K4me1, H3K4me2, H3K4me3, and H3K36me3 in human embryonic stem cells (H1 HESCs), from the Broad ENCODE data. (b,d,f) The capacity of
CHANCE multi-IP normalization to detect batch effects. The clustering of technical replicates (denoted by 1 and 2) for each biological replicate
(denoted by A and B) seen in (f) is quantified in the pairwise differential enrichment matrix (d), which shows a statistically insignificant percentage of
the genome differentially enriched between replicates but a non-negligible percentage of the genome differentially enriched between batches.

Diaz et al. Genome Biology 2012, 13:R98
http://genomebiology.com/2012/13/10/R98

Page 5 of 15



to aid scientists in optimizing their ChIP and library con-
struction protocols by identifying biases and estimating the
relative effectiveness of different methods.

Detecting bias in the library preparation and sequencing
ChIP-seq data may have many biases and artifacts that
can significantly influence the interpretation of the data.
CHANCE can rapidly assess the quality of ChIP-seq by
detecting two types of bias: bias in base-call content and
quality and bias in read density. Severe bias in base-call
content and quality can indicate problems with the
sequencing [7]. Moreover, the genome-wide distribution
of reads is never uniform. Biases in read density for Input
have been shown to occur at transcription start sites and
internal gene exon boundaries [3] and can also be
observed in a cell type-dependent fashion [1]. In addition
to the aforementioned ability to detect PCR amplification
bias, CHANCE provides several tools to analyze the
sources of bias more completely, as described below.
Analyzing nucleotide content and base-call quality
CHANCE displays nucleotide frequency plots as well as
the frequency of uncallable bases. It shows the distribu-
tion of Phred quality scores at each base. A stretch of
uncallable bases, or a stretch of bases with unusual
nucleotide content or unusually low base-call quality
scores can indicate problems with the sequencing. In
Figure 4, we compare the frequency of uncallable bases
and nucleotide content at each sequenced base location
between the sub-ventricular zone NSC H3K4me3 and
whole-limb H3K27ac data sets. We see in the H3K27ac
data a stretch of bases from positions 22 to 24 with a
noticeable GC content bias and a high frequency of
uncallable bases. Moreover, we see a dip in base-call
quality scores over the same stretch of bases. This kind
of analysis can provide quick, valuable feedback to the
sequencing facility.
Detecting library preparation bias
Bias in Input read density might reflect copy number
alterations in cancer cells, amplification bias in generat-
ing duplicate reads, GC content and mappability bias, or
inability to sonicate heterochromatin regions. These
biases occur at different genomic length scales, and it can
be useful to assess the characteristic length scales at
which major biases occur, such as to obtain a rough pic-
ture of amplified fragment sizes in cancer cells. CHANCE
detects bias in read density by using a signal processing
technique known as spectral analysis. This technique
decomposes the variation in read density into variations
on a set of characteristic length scales. CHANCE then
compares this decomposition to idealized data, Poisson-
simulated at the same depth and coverage as the user’s
provided data set. Figure 5 shows a spectral analysis of
the Input channels of the mouse sub-ventricular zone
and whole limb data sets. On the x-axis is a set of length

scales, from 1 kbp to 16.384 Mbp. On the y-axis is the
percentage of variance in read density observed in the
user’s data at each length scale. If the chromatin sonica-
tion or digestion process were unbiased - or, if the library
preparation, sequencing, and mapping were all done
without bias or error - then the break points introduced
in chromatin would be uniformly distributed genome-
wide, and the number of reads mapping to a particular
region would be approximately Poisson-distributed with
a mean constant throughout the genome. This expected
trend would appear in the spectral analysis plots (Figure
5) as a spectral energy distribution that was highest at 1
kbp, indicating a read density profile composed primarily
of high frequency fluctuations about a global mean. The
spectral energy distribution would then rapidly drop
down as we increase the length scale along the x-axis.
Figure 5a,b shows Input from mouse NSCs both before
and after de-duplication (compare Figure 1b,c and Figure
2b,c). Note that the distribution more closely matches
the ideal simulated data after de-duplication, indicating a
decrease in bias. For comparison, Figure 5c demonstrates
relatively low read density bias in the Input data from
mouse whole limb.

Performing validation and comparison to known data
sets
Spot validation of ChIP-seq peaks at sites known a priori
to be enriched can provide additional confirmation of the
success of an experiment. Comparison with other experi-
ments of the same type can also help assess the relative
quality of the user’s data. These tests provide additional
evidence that a ChIP-seq data set is reliable, as described
below.
Validating ChIP enrichment on a candidate list of regions
CHANCE allows the user to enter a list of candidate
regions for spot validation. For example, experimentalists
typically check positive control regions via ChIP-qPCR
and would be interested in checking the enrichment of
those regions in their ChIP-seq data. The spot-check
routine returns the fold-change of IP over Input and an
estimate of its statistical significance at each of the user-
defined locations. Figure 6 shows an example of spot
validation of the H3K4me3 H1 HESC data set.
Comparing user data to other experiments
One useful way of checking whether a ChIP-seq experi-
ment was successful is to compare its peak list with those
obtained by other scientists in other cell types. The over-
lap will not be perfect, but a very poor overlap will sug-
gest that the experiment might not have worked. To
facilitate this process, CHANCE compares the user’s data
to other data sets of the same ChIP type in the ENCODE
repository. However, CHANCE does not detect peaks to
carry out this comparison, but it rather compares the
genome-wide enrichment profile of the user’s raw data to
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all available ENCODE ChIP-seq data for the same TF or
epigenetic mark. It then uses these ENCODE data sets to
compute the probability that the user’s experiment is a

statistical outlier. Although agreement with ENCODE
data does not guarantee an experiment was successful, a
high probability of being an outlier may indicate a data
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Figure 4 Base call content and quality bias. This figure demonstrates CHANCE output for base call content and quality bias module. (a,b)
Plot of nucleotide frequency as a function of base position. (c,d) Plot of the frequency of uncallable bases as a function of base position. (e,f)
Heat maps of Phred quality scores, where the x-axis corresponds to base position and the y-axis to Phred quality score. The color of a given (x,y)
pair gives 1 minus the cumulative density of reads with a quality score of y or less. That is, it gives the fraction of reads with a quality score of y
or more; so, the redder, the better. (a,c,e) H3K27ac IP in mouse whole limb from the Ahituv lab at UCSF. These samples show a marked drop in
quality, a rise in uncallable bases, and an abrupt change in nucleotide frequencies for positions 22 to 24, indicating potential problems with the
sequencing. For comparison, (b,d,f) show results for H3K4me3 IP from mouse NSCs from the Lim lab at UCSF, which exhibit relatively low bias.
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Figure 5 Read density bias. This figure shows CHANCE output for the read density bias estimation module. The x-axis denotes length scale,
from 1 kbp to 16.384 Mbp. The y-axis denotes percentage of variance in data at a given length scale (spectral energy). The blue curve is the
user’s data, while the red curve denotes the distribution of an idealized bias-free data set generated by a Poisson simulation (see Materials and
methods). Noticeable deviation of the blue curve from the red simulation curve might indicate copy number alterations in cancer cells,
amplification bias in generating duplicate reads, GC content and mappability bias, or inability to sonicate heterochromatin regions. (a) Mouse
NSC Input from the Lim lab with significant IP enrichment, but also with a heavy amplification bias in the input channel. (b) After de-duplicating
reads, the sample in (a) shows a reduction in bias as demonstrated by a better agreement between the user’s data and the Poisson simulation
(compare Figures 1b,c and 2b,c). (c) For comparison, this panel shows mouse whole limb Input from the Ahituv lab, which demonstrates
relatively low bias in read density.
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Validation results:

ACTB~HK, IP/Input fold change:32.1491, p�value:1e�300
RPL19~HK, IP/Input fold change:46.6371, p�value:1e�300

SSX3~testis, IP/Input fold change:0.43735, p�value:0.83447
SOX5~testis, IP/Input fold change:25.6842, p�value:1e�300
GRIA1~cortex, IP/Input fold change:6.928, p�value:1e�300

ZNF238~cortex, IP/Input fold change:27.1155, p�value:1e�300
random, IP/Input fold change:0.74349, p�value:0.69511
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(b)
Figure 6 Spot validation. This figure demonstrates CHANCE’s spot validation module. H3K4me3 in H1 HESCs from the Broad ENCODE data is
spot validated for promoter regions of known housekeeping and tissue-specific genes. (a) The summary statement gives the IP over Input fold-
change in read count as well as a P-value based on a Poisson null model (see Materials and methods). A random locus is added for comparison.
The putative proximal promoter was estimated to 3 kbp upstream to 3 kbp downstream of the transcription start site. (b) Graphical
representation of the results. On the x-axis, we have the gene symbols followed by the tissue type with which their expression is commonly
identified; HK denotes ‘house keeping’ or ubiquitously expressed genes. The y-axis shows the number of reads mapping to the corresponding
promoter region, both in IP and Input.
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set has problems. Figure 7 shows an example of CHANCE
comparison to known data sets for the H3K27me3 in H1
HESCs, also from Broad ENCODE data sets.

Discussion
Although software exists for read-trimming and filtering
prior to mapping reads to a reference genome and for
downstream analysis such as peak calling, there is still a
need for a software package designed specifically for
ChIP-seq quality control that can provide immediate
feedback to experimentalists. Moreover, as ChIP-seq
becomes more widely used, there is a need for tools that
do not require programming skills to use and that can
produce high quality graphical reports. CHANCE fills
that gap. Figure 8 illustrates how CHANCE might fit into
a typical work flow. CHANCE takes mapped reads in
commonly used formats and outputs useful statistical

summaries (for example, those shown in the pink shaded
region in Figure 8), which can then provide immediate
feedback to the experimentalist and sequencing facility.
By serving as a key link between data generation and
downstream analysis, CHANCE will help expedite the
analysis and optimization of ChIP-seq experiments and
will help maintain the high quality requisite for better
reproducibility and consistency.

Materials and methods
IP enrichment estimation
CHANCE uses SES [1] to compute the largest subset of
the genome for which the distribution of reads in IP
matches that in Input. This procedure partitions the
genome into two sub-regions: a region of potential bio-
logical signal and a background region. A scaling factor
for IP-Input normalization can then be computed by

�2 0 2 4
log

2
 odds

log
2
 IP/Input odds ratio a random 

tag lies in a consensus peak       

 

 

normal model
ENCODE data
your experiment

Figure 7 Comparison with ENCODE. CHANCE can quickly compare the user’s experiment with thousands of other experiments in the ENCODE
repository. This figure shows CHANCE’s output for H3K27me3 ENCODE data from the Broad Institute. On the x-axis is the IP over Input odds ratio
that a randomly chosen read from the user’s sample will lie in the union of all peaks of all ENCODE samples for the same transcription factor or
epigenetic mark as the user’s ChIP. The blue bell curve is a probabilistic model fitted to all available data. The blue circles denote all available
data sets from ENCODE, and the red star is the user’s sample. Intuitively, the user’s sample has a poor overlap with the ENCODE data if the red
star lies in the extreme left tail. The figure shows that the H3K27me3 sample is not an outlier when compared to other ENCODE samples.
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mean normalizing the read density in IP background to
the read density, in the same region, from the Input
channel. As a byproduct of this process, an estimate of
differential enrichment in the IP over Input (the percen-
tage increase in mean tag density in IP compared to
Input), as well as an estimate of the percentage of the
genome enriched for signal (the relative size of the non-
background region) can be obtained. As described in [1],
we use a divergence test on the percentage allocation of
reads in each channel to determine a P-value for statisti-
cal significance.
In order to ascertain the precision and recall of the

divergence test as a classifier of successful experiments, we
calibrated CHANCE on a data set obtained from the
ENCODE repository. We downloaded all ENCODE ChIP-
seq data sets with replicate inputs (Additional file 2). We
then re-sampled from the genomic distribution of reads in
each dataset ten times; these re-sampled data were used to
produce an empirical distribution of divergence statistic
from all possible cell type-matched IP-Input or replicate
Input-Input pairs. The divergence test statistic and asso-
ciated P-value were calculated for each pair. The positive
tests derived from IP-Input comparisons were taken as
true positives, and the positive tests for Input-Input com-
parisons were assumed false positives. This is reasonable

under the assumption that the ENCODE repository is
curated and the vast majority of IP-Input pairs represent
successful experiments, while the vast majority of compar-
isons between Input replicates should show no differential
enrichment. In this fashion, we estimate a q-value (positive
false discovery rate) for a given value of the divergence test
statistic as the fraction of Input-Input pairs in the set all
samples with divergence test values greater than or equal
to the user’s divergence test value. The q-value is thus
interpreted as the fraction of comparisons from ENCODE
that show differential enrichment at the level of the user’s
data, but turn out to be technical replicates of the Input
channel.
While the majority of histone mark ChIP-seq enrich-

ment profiles tend to be spread out, profiles for TFs tend
to be more punctate. This spreading can result in a reduc-
tion in ChIP signal and lead to a stronger mixing between
the distributions of Input versus Input and IP versus Input
divergence test statistics for histone mark ChIP-seq,
whereas the distributions are more separable for TF ChIP-
seq, as shown in Figure 9. This bias might increase the
q-value estimate for histone ChIP-seq. Furthermore, can-
cer cells frequently suffer from genomic instability, and
copy number alterations in background regions can artifi-
cially increase the local read density. This bias is reflected

Mapped reads

CHANCE

Troubleshoot ChIP

Weak IP
IP is strong

but very biased Strong IP
and low bias

Library generation
and sequencing

Refine PCR protocols

PCR amplification
bias detected

Zero inflation/
Low coverage detected

Additional rounds
of sequencing

ChIP

Spot validation
failed

Poor quality 
base calls

Addtional sequencing

Figure 8 A typical workflow with CHANCE. CHANCE can provide a scientist with feedback regarding the success of their experiment, as well
as how their protocols may be improved. CHANCE is designed to work with reads mapped to a reference genome. The dotted pink region
illustrates the useful quality metrics computed by CHANCE to assess a ChIP-seq experiment. One can use these intuitive results to determine if
the experiment is satisfactory or if additional protocol modification or sequencing is required.
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in the fact that the null distribution of divergence test
values for Input versus Input comparisons has a heavier
tail in cancer samples compared to normal tissues. In
order to account for these potential biases, CHANCE
reports q-value estimates of enrichment separately for
each of the following categories of training data: (a) his-
tone mark in normal cells, (b) histone mark in cancer
cells, (c) TF in normal cells, (d) TF in cancer cells, and (e)
all samples. Figure 9 shows whisker-box plots of the diver-
gence test statistic for the ENCODE training data sepa-
rated into the above categories. We do indeed see a slightly
stronger mixing of the IP-Input with the Input-Input distri-
bution when comparing histone mark data in the top

panels (Figure 9a,b) with the TF data in the bottom panels
(Figure 9c,d), as evidenced by a higher top whisker mark in
the IP-Input distributions for the TF data compared to the
histone data. Moreover, comparing the cancer data in the
left panels (Figure 9a,c) with the normal data on the right
panels (Figure 9b,d) shows that the cancer data distribution
of Input-Input comparisons is indeed heavier tailed than
the Input-Input distribution of the normal data. Conse-
quently, one should expect higher false discovery rates in
histone and cancer samples for the reasons mentioned pre-
viously. CHANCE will alert the user to a possibly failed
sample if all of the q-values are above 5%, but the user may
also compare their experiment by category.
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Figure 9 The divergence test statistic by sample type. These box plots show the distributions of the divergence test statistic for IP-Input and
Input-Input comparisons for the ENCODE training data grouped into sample types: (a) histone mark in cancer cells; (b) histone mark in normal
cells; (c) TF in cancer cells; and (d) TF in normal cells. The distributions of the divergence test statistic have slightly stronger mixing for histone data
(a,b) compared to TF data (c,d), as evidenced by the higher whiskers in the TF IP-Input box plots. Moreover, the Input-Input comparisons for cancer
samples (a,c) show a greater number of outliers denoted by red plus signs with large divergence test values compared to normal samples (b,d). To
account for these differences, CHANCE estimates false discovery rates separately for each sample type. TFBS, transcription factor binding site.
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Detection of insufficient sequencing depth in the Input
channel
As in [1], let p(a) denote the percentage of reads in the
IP channel contained in the first a percent of 1 kb non-
overlapping bins sorted in an increasing order of read
density. Similarly, let q(a) denote the percentage of the
matching tag counts in Input, reordered by the sorting
induced by the sorting of the IP channel. If IP had suffi-
cient enrichment, then we must have p(a) ≤ q(a), since
reads accumulate significantly in a small genomic subset
targeted by IP, while the majority of sequences in the
Input channel are more uniformly distributed through-
out the genome. On the other hand, if there is insuffi-
cient sequencing depth in the Input channel, then there
will be abundant zero counts in Input tag bins; and for
a sufficiently small, we will have q(a) ≤ p(a). If
CHANCE detects this crossing of p(a) from below by q
(a), it reports a warning of potential low coverage in the
Input channel.

Detection of insufficient sequencing depth in the IP
channel
Similarly, if there is insufficient sequencing depth in the
IP channel, there will likewise be abundant zero counts
in its tag bins. This implies that p(a) will be zero for a
≤ a0 for some a0 > 0, a0 therefore being the percentage
of the genome with zero coverage. In some extreme
cases, the maximal percentage differential enrichment of
IP over Input occurs at a0 (for example, Figure 2a),
indicating that an insufficient coverage in the IP channel
can create too many zero-count bins, which drive the
background noise estimate to zero. In this case,
CHANCE will excise the regions of zero coverage in the
IP and re-compute the percentage enrichment; it will
also report a warning of insufficient sequencing depth in
the IP channel.

Detection of potential PCR amplification bias
If 25% or more of the reads from either channel map to
less than 1% of the genome, then there tend to be severe
point spikes in the enrichment profile, most likely corre-
sponding to mapping or PCR biases. CHANCE reports a
warning if this condition is satisfied.

Read density bias estimation
The read density bias estimation module has two com-
ponents: a spectral analysis and an idealized Poisson
simulation based on the user’s data. Spectral analysis is
a tool that allows one to determine how much of the
variance in local coverage in the Input channel occurs
over a given genomic length scale. An ideal Input sam-
ple would have only small fluctuations in coverage as
we move along the genome and would have all of its
variance at small length scales. In a more realistic

setting, the distribution of variance would be concen-
trated at a small length scale and rapidly decrease as a
function of increasing length scale, displaying some
minor long-distance correlations in read density. A
heavily biased sample will have systematic and reprodu-
cible fluctuations in mapped read density at several
length scales, corresponding to condensed chromatin
fragments resistant to sonication, PCR amplification
bias, or genomic amplification and deletion events in
cancer cells. In the spectral analysis plot, this kind of
fluctuation in read density will often appear as a local
maximum. For example, in Figure 5a we have a sample
with a large number of duplicate reads. Note the spike
in percentage variance that occurs at a length scale 2
kbp, indicating a large number of ‘point spikes’ in the
density plot that rise and fall over 2 kbp intervals. This
fluctuation disappears after de-duplicating reads, as
shown in Figure 5b, suggesting that spectral analysis
provides an efficient way of detecting PCR amplification
bias during library preparation. The spectral analysis
was done by using a decimated Haar wavelet decompo-
sition, as described in [1].
The second component is a Poisson simulation. The

idea is to perform a spectral analysis on an idealized set
of tag counts that is unbiased, but is none the less
sampled to the same depth (the same genome-wide
mean tag count) and distribution of coverage (the same
genome-wide spread in tag count). The spectral energy
landscape of a sample with minimal bias will be similar
to that of the simulation (compare Figure 5a and Figure
5c). To generate an unbiased simulation, we used a
Poisson-Gamma mixture model. We performed the
simulation by fitting a Gamma distribution to the set of
tag counts per 1 kbp observed in the Input channel,
using maximum likelihood. We then generated a list of
tag counts by first sampling from the Gamma distribu-
tion and using this value as the mean of Poisson distri-
bution. We then sampled from the Poisson distribution
to obtain the tag count.

Normalizing multiple IPs for differential analysis
For multiple IP differential analysis, CHANCE first nor-
malizes each sample to the mean read depth over all
samples considered. CHANCE then forms a consensus
sample using a multi-channel signal combiner described
in [17-19]. Briefly, given n IP samples, alignments are
first binned into 1 kbp non-overlapping windows. Then,
if sij is the count in the j-th bin of the i-th sample, the
combiner chooses positive weights {w1,...,wn} to form the
consensus:

cj =
n∑

i=1

wisij
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The weights are chosen to maximize
n∑

k=1

n∑

l=1

Mklwkwl

such that
n∑

i=1

wi = 1, where Mkl is the sample covariance

matrix of sij. See [17-19] for the derivation. This has the
effect of determining a consensus whose background
component will be the largest possible subset of the
genome of mutual background for all n original samples.
Lastly, SES is used to determine differential enrichment
of each sample from the consensus, as well as the pair-
wise differential comparisons between samples.

Spot validation
The user can provide CHANCE with a list of genomic
loci to spot validate positive and negative control regions,
such as those used in ChIP-qPCR prior to sequencing.
The fold-change in tag count is reported. The reported
P-value for each region is the probability of the tag count
in the IP channel, under a Poisson null model with a
mean equal to the observed tag count in the Input chan-
nel. This is not intended for peak calling but rather for
validation and confirmation of CHANCE’s other quality
metrics. In other words, although a large fold-change and
small Poisson P-value do not necessarily imply a success-
ful IP, lack of enrichment in multiple positive control loci
will suggest problems with sequencing.

Comparison with ENCODE
The ENCODE project provides representative transcrip-
tional and epigenetic maps of the mammalian genomes.
We thus reasoned that the ENCODE data can provide a
rough landscape of TF binding and epigenetic modifica-
tion sites that are applicable to multiple cell types. The
‘Comparison with ENCODE’ module thus allows one to
compare one’s own dataset with corresponding ENCODE
datasets to determine if the user’s data show an accumula-
tion of reads within ENCODE peaks. For each TF or epi-
genetic mark for which ENCODE has called peaks
(Additional file 2), we assembled a union peak set. The
union peak set is the union of all peaks for the same TF or
histone mark from multiple cell types. We then count the
fraction p of user reads that map to the union set in the IP
channel, and the fraction q of reads that map to the union
set from the Input channel. The relative odds of observing
a read from the IP channel in the union set, compared to
Input, can then be expressed by the odds ratio p/(1 - p)/q/
(1 - q). We then compute the same odds ratio for each IP-
Input pair, in ENCODE, for the same TF or histone mark.
The distribution of odds ratios gives the user a sense of
how cell type-specific enrichment for that particular mark
is. If the user’s odds ratio is much less than one, this indi-
cates that the user’s data set is somewhat of an outlier,
compared to ENCODE. We compute the log of the odds

ratio, since the log odds is approximately normal. This
allows us to fit a normal curve to the distribution of
ENCODE log odds ratios. The cumulative distribution at
the log odds of the user’s data then gives a probability
indicating how much of an outlier the user’s data set is.
Although not definitive of a failed experiment on its own,
a small odds ratio provides additional evidence of a poten-
tially failed experiment.

Software availability
CHANCE is open source, published under the GNU
General Public License. The Matlab source code, User
Guide, examples, and executables for Mac OS, Win-
dows, and Linux are available at https://github.com/son-
glab/chance.

Additional material

Additional file 1: CHANCE feature comparison table.

Additional file 2: CHANCE training data table. This file enumerates
the experiment information and url for each ENCODE sample used in
either the training data set for the false discovery rate computation in
the “IP enrichment” module or the “Comparison with ENCODE module”.
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