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Abstract

We propose a method for predicting splice graphs that enhances curated gene models using evidence from RNA-
Seq and EST alignments. Results obtained using RNA-Seq experiments in Arabidopsis thaliana show that predictions
made by our SpliceGrapher method are more consistent with current gene models than predictions made by TAU
and Cufflinks. Furthermore, analysis of plant and human data indicates that the machine learning approach used
by SpliceGrapher is useful for discriminating between real and spurious splice sites, and can improve the reliability
of detection of alternative splicing. SpliceGrapher is available for download at http://SpliceGrapher.sf.net.

Background
Deep transcriptome sequencing (RNA-Seq) with next-
generation sequencing (NGS) technologies is providing
unprecedented opportunities for researchers to probe
the transcriptomes of many species [1-5]. An important
goal in these studies is to assess the extent of alternative
splicing (AS), a process that increases transcriptome and
proteome diversity, and plays a key role in regulating
gene expression and protein function [6,7]. Although it
is inexpensive and easy to obtain whole transcriptome
data using RNA-Seq, one limitation has been the lack of
versatile methods to analyze these data. Consequently,
there is an increasing demand for methods that can use
the short reads produced in these studies to predict pat-
terns of AS.
The sequences produced by NGS methods have char-

acteristics that complicate the task of identifying the
mRNA transcripts represented in a sample. A sequen-
cing read may consist of fewer than 40 nucleotides,
making it difficult to identify a unique origin within a
reference sequence. In addition, NGS base-call error
rates tend to increase with read length, raising the
chance of a mismatch when aligning a read to a refer-
ence sequence [8]. These ambiguities are exacerbated by
the presence of paralogous genes that can give rise to

reads that align well in multiple locations. Much of the
work on analyzing NGS reads has focused on aligning
reads within exonic regions, and many methods exist for
the problem of aligning reads without gaps-for example,
MAQ [9], PASS [10] and BowTie [11].
Reads that span splice junctions introduce additional

challenges. A splice junction may occur anywhere within
a short read, so the read may have just a few bases on
one side of a junction. Such a short sequence may align
in multiple locations, making it difficult to identify its
true origin. One can use heuristics to restrict the num-
ber of candidate locations: for example, by establishing
limits for permissible intron lengths, or by focusing on
locations that are bounded by canonical GT-AG or GC-
AG splice-site dimers. Several spliced alignment algo-
rithms exist that use these and other approaches to
identify unique alignments for spliced reads [12-17].
The first studies that used RNA-Seq data to predict

AS focused on exon-skipping events, the most prevalent
form of AS in mammals (see, for example, [1,18-21]).
To identify splice junctions recapitulated in short read
data, these studies used exon sequences flanking anno-
tated splice sites to produce a database of splice junction
sequences. Using novel combinations of known acceptor
and donor sites, researchers can create a database that
consists of both known and putative splice junction
sequences. RNA-Seq reads that align to these putative
sequences then provide evidence for novel splicing
events.
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In this work we compare our approach with two
methods: Cufflinks [22], and TAU [3]. Both methods
were originally designed for de novo splice form predic-
tion, but can make limited use of existing annotations.
TAU predicts splice forms by assembling for each gene
all feasible combinations of exons that have been identi-
fied in the alignment and spliced-alignment step. This
approach ensures that no splice form will be overlooked,
but it can produce a large number of transcripts that
make it difficult to identify the most realistic predic-
tions. Cufflinks uses a more sophisticated approach that
seeks to identify the smallest set of mRNA transcripts
that explain the observed data [22]. The Scripture
method constructs a transcript graph on the basis of
regions that exhibit statistically significant read depth
compared to genomic background and predicts splice
forms by considering all paths through the graph, an
approach similar to TAU’s [23]. Methods that perform
de novo transcriptome assembly without requiring a
reference genome-for example, Trinity [24] and ABySS
[25]-are not included in our comparison.
To address ambiguities that inevitably arise when

using short reads, and to take advantage of a rich and
fast-evolving body of transcriptome data, we developed
SpliceGrapher, a Python-based scripting tool designed to
leverage gene annotations and ESTs, in addition to NGS
reads. SpliceGrapher predicts ‘splice graphs’ (Figure 1),
which capture in a single structure all the ways in which
exons for a given gene may be assembled [26-32]. In
these graphs, exons are depicted as nodes and introns
are the edges that connect them. The compact structure
allows researchers to visualize AS easily; and further-
more, we argue that NGS data rarely support the pre-
diction of novel splice forms unambiguously. The splice
graph structure permits SpliceGrapher to evaluate NGS
data in the context of existing annotations, facilitates
automated statistical analysis of AS events [31], and aids
in comparing AS behaviour between gene families [32].
A few tools, such as Sircah, can produce splice graphs

from conventional EST or cDNA alignments [29]. In
previous work we enhanced Sircah’s AS detection rules
and extended the package to provide statistics and pro-
tein predictions for genome-wide studies of AS based
on EST data [31]. With SpliceGrapher we extend this
idea by incorporating multiple forms of data, including
RNA-Seq reads, into splice graph predictions.
SpliceGrapher was designed from the outset to inte-

grate RNA-Seq data, annotated gene models and EST
alignments to produce comprehensive splice graph pre-
dictions. It applies inference rules to generate predic-
tions that are compatible with all available evidence.
The package includes flexible visualization tools that can
depict splice graphs along with the evidence used to
predict them. We compare SpliceGrapher’s predictions

with splice graphs generated from TAU and Cufflinks
output based on RNA-Seq data and find that our results
are more consistent with existing evidence from curated
gene models.

Results and discussion
Splice graph prediction pipeline
SpliceGrapher is designed to enhance existing gene
models using RNA-Seq and EST data. Relying on exist-
ing annotations as a baseline provides SpliceGrapher
with a context in which to interpret short-read data.
SpliceGrapher’s splice graph prediction pipeline consists
of the following steps (Figure 2): ungapped alignment of
short reads to the reference genome, spliced alignment
of reads that did not align in the first step, initial splice
graph construction from the annotated gene models,
assembly of exons from the ungapped short-read align-
ments, and insertion of the new exons into the splice
graph using spliced alignments. SpliceGrapher accepts
as input EST alignments as well; these are interpreted as
splice graphs that SpliceGrapher merges with its gene
model baseline graphs.
Figure 1 provides an example of a splice graph that

SpliceGrapher predicted for a gene in Arabidopsis thali-
ana, along with the graph constructed from the gene
model, the splice junctions that were recapitulated in
the RNA-Seq data, and the read depth along the geno-
mic region. SpliceGrapher combined these different
forms of evidence and predicted only those novel spli-
cing events it could resolve unambiguously.
We first present results on RNA-Seq data from two

plant genomes; applicability to mammalian genomes is
demonstrated in a later section. We ran SpliceGrapher
on short-read data from A. thaliana [3] and Vitis vini-
fera [33]. In Arabidopsis we provided SpliceGrapher
with The Arabidopsis Information Resource (TAIR) ver-
sion 9 of the genome annotations. New splice forms
annotated in TAIR version 10 were reserved for asses-
sing the ability of SpliceGrapher to detect novel annota-
tions. SpliceGrapher predicted nearly 1,500 AS events
that were not present in the TAIR9 version of the A.
thaliana genome annotations. In V. vinifera, whose gene
models showed no AS, SpliceGrapher predicted more
than 2,600 events. The breakdown of those events by
type (intron retention, exon skipping, and alternative 5’
or 3’) is found in Table 1. In plants, intron retention
(IR) is the most prevalent form of AS [34,35] and
accounts for more than 30% of AS events in the A.
thaliana gene models (see also [35]). The novel exon-
skipping (ES) and alternative 5’ events predicted in A.
thaliana are in proportions similar to those found in
the gene models (Table 1), while alternative 3’ events
are higher. Notably, just 21% of the novel events are IR,
compared to 33% in the gene models. IR events are
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more difficult to predict from RNA-Seq data because
prediction depends on having read coverage across an
intron’s full length (Figure 3 and Materials and meth-
ods). We have also run SpliceGrapher on a dataset

composed of longer 76-nucleotide reads in A. thaliana;
despite having less reads (41 million compared to 284
million), SpliceGrapher was able to find close to 2,400
novel AS events in the new dataset, compared to close

Figure 1 Example of a predicted splice graph in A. thaliana. RNA-Seq alignment data were loaded along with gene model annotations to
create a composite model that incorporates all available evidence. SpliceGrapher’s visualization modules produce color-coded graphs based on
the color scheme used by Sircah [29] that makes it easy to see exons and introns involved in AS events. RNA-Seq read coverage across one of
the introns was sufficient to allow SpliceGrapher to identify an intron retention event (exon outlined in blue). In addition, a novel splice junction
(highlighted in green) provided SpliceGrapher with evidence for an alternative 3’ splicing event (highlighted in orange). The numbers associated
with splice junctions indicate the number of reads that align across it. Vertical bands in the background depict exon boundaries in the original
gene model.
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to 1,500 in the 32-nucleotide read data. Complete statis-
tics for the new data are provided in Table S1 in Addi-
tional file 1. In V. vinifera the rate of IR prediction is
even lower, at 13%. This can be explained by the longer
introns in V. vinifera, where the average intron length
we found in the annotated genes is 969 nucleotides
(compared with 170 nucleotides for A. thaliana). The
intron length influences the predicted IR rate for V.
vinifera by making prediction of IR from RNA-Seq data
more difficult. Furthermore, V. vinifera may have a
lower IR rate to begin with, since low IR rates are
observed in species with long introns [36].

Comparison with TAU and Cufflinks
To see how SpliceGrapher’s AS predictions compared
with other tools, we ran the HashMatch/Supersplat/
TAU and TopHat/Cufflinks pipelines, both with and

without gene models, using the same RNA-Seq data as
SpliceGrapher, and assembled splice graphs from their
transcript predictions. We note that Cufflinks was
designed for mammalian genomes: its assembly algo-
rithm includes heuristics that are based on the charac-
teristics of human and mouse transcripts [22]. TAU was
designed to analyze the A. thaliana data we consider
here [3].
Our first step in comparing SpliceGrapher to Cufflinks

and TAU was to test the ability of each package to pre-
dict given and novel annotations. This was quantified by
computing the fraction of exons and introns in the
annotations that were predicted by each package (Equa-
tion 1 in the Materials and methods section); this is the
‘recall’ at the exon/intron level. These statistics are sum-
marized in Table 2. First we discuss the rate at which
each package is able to recall TAIR9 annotations.

Figure 2 Splice graph prediction pipeline. SpliceGrapher predicts splice graphs using information from gene models, EST alignments and
RNA-Seq data. RNA-Seq exonic alignments may be performed using any popular short-read alignment tool. RNA-Seq spliced alignments may be
performed using a conventional short-read mapping tool with a database of splice junctions predicted by SpliceGrapher, or they may be
performed using short-read spliced-alignment programs such as TopHat, followed by filtering using SpliceGrapher’s database of predicted splice
sites. SpliceGrapher incorporates all of this information to produce a comprehensive splice graph prediction.
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Without gene models, Cufflinks and TAU achieve simi-
lar levels of recall, which are below 0.29. This illustrates
the difficulty of predicting transcriptional activity from
NGS data alone. Recall improves dramatically when we
provide Cufflinks and TAU with gene models: for Cuf-
flinks it increases to 0.94 at the exon level, and to 0.89
at the intron level; for TAU it increases to 0.69 at the
exon level, and 0.79 at the intron level. Since SpliceGra-
pher uses the input annotations as a baseline, it achieves
perfect recall on TAIR9; Cufflinks and TAU sometimes
ignore the annotations that are provided as input, which
is a result of how they use annotations in their algo-
rithms. Cufflinks, for example, breaks down annotated
exons into pseudo-reads that are incorporated into its
algorithm; and since it looks for a minimal set of tran-
scripts that explain the observed read depth, the annota-
tions can be ignored.
When TAU and Cufflinks use only RNA-Seq data, the

transcripts that they predict are sometimes fragmented
as a result of gaps in short-read coverage (Figure 4; Fig-
ures S1 to S3 in Additional file 1). For Cufflinks the

number of genes for which it made predictions
increased significantly when provided with gene models:
from 10,277 genes to 28,277 in A. thaliana and from
10,022 to 23,634 in V. vinifera. For TAU the increase
was not so dramatic, and when given gene models we
have observed that it tends to predict what we believe
are overly complex models. Figure S2 in Additional file
1 is a representative example.
None of the packages was able to predict more than

8% of the new annotations that were added in the
TAIR10 version of the Arabidopsis genome annotations
(see Table 2 for details). SpliceGrapher achieved better
recall than Cufflinks-with or without annotations-despite
making fewer overall predictions of new exons and
introns; this is a strong indication that SpliceGrapher’s
predictions have fewer false positives. Surprisingly, the
recall level for Cufflinks with gene models was lower
than without them. SpliceGrapher also achieved better
recall than TAU without annotations. With gene mod-
els, TAU achieved the highest recall at the exon and
intron levels, but we believe it is a result of a severe

Table 1 Alternative splicing events

AS AS events

genes IR ES Alt. 5’ Alt. 3’ Total

A. thaliana models 4,029 1,987 (33%) 550 (9%) 1,256 (21%) 2,145 (36%) 5,938

SpliceGrapher

No ESTs 4,901 2,248 (30%) 714 (10%) 1,560 (21%) 2,866 (39%) 7,388

Novel 885 308 (21%) 164 (11%) 304 (20%) 721 (48%) 1,497

With ESTs 6,162 3,658 (33%) 994 (9%) 2,335 (21%) 4,128 (37%) 9,916

Novel 2,154 1,779 (34%) 444 (8%) 1,079 (20%) 1,983 (38%) 5,285

Cufflinks

No gene models 1,263 449 (32%) 383 (28%) 237 (17%) 319 (23%) 1,388

Novel 699 429 (32%) 380 (28%) 232 (17%) 304 (23%) 1,345

With gene models 6,056 4,029 (39%) 2,857 (27%) 1,427 (14%) 2,106 (20%) 10,419

Novel 2,319 2,232 (38%) 2,550 (43%) 552 (9%) 594 (10%) 5,928

TAU

No gene models 2,777 893 (17%) 475 (9%) 1,481 (27%) 2,555 (47%) 5,404

Novel 1,591 811 (16%) 460 (9%) 1,431 (28%) 2,351 (47%) 5,053

With gene models 10,458 94,571 (85%) 598 (1%) 5,972 (5%) 9,820 (9%) 110,961

Novel 8,364 94,124 (86%) 476 (0%) 5,697 (5%) 9,219 (8%) 109,516

V. vinifera models 0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0

SpliceGrapher 2,039 347 (13%) 830 (31%) 640 (24%) 838 (32%) 2,655

TAU

No gene models 3,099 531 (10%) 684 (13%) 1,321 (25%) 2,743 (52%) 5,279

With gene models 15,874 135,585 (72%) 4,938 (3%) 23,615 (13%) 24,406 (13%) 188,544

Cufflinks

No gene models 1,057 324 (24%) 519 (39%) 140 (11%) 349 (26%) 1,332

With gene models 4,263 4,120 (34%) 3,148 (26%) 2,165 (18%) 2,818 (23%) 12,251

The number of AS events detected by SpliceGrapher, Cufflinks, and TAU compared with events inferred from the TAIR9 annotations. We track the following AS
event types: intron retention (IR), exon skipping (ES), alternative 5’ sites (Alt. 5’) and alternative 3’ sites (Alt. 3’). SpliceGrapher uses the TAIR9 gene models as a
baseline, so it includes all of the same AS events along with additional events inferred from RNA-Seq data. Without gene models, nearly all TAU and Cufflinks
predictions are novel AS events. With gene models, more than half of Cufflinks predictions reproduce AS events from the gene models. TAU uses known splice
sites to predict all possible exons in a gene, generating vast numbers of novel exons and novel IR events.
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over-annotation that was discussed earlier. At the tran-
script level SpliceGrapher performed best. Its splice
graphs were consistent with 28 new splice forms, com-
pared with 4 for Cufflinks and 11 for TAU when pro-
vided with TAIR9 annotations. Both packages were
unable to correctly predict any transcript without using
the gene models. In Additional file 1 we compare Cuf-
flinks and SpliceGrapher predictions to results we have
recently obtained using a curated set of full-length
cDNAs and ESTs for SR genes in Arabidopsis [32].

Alternative splicing predictions
SpliceGrapher predicts AS events in proportions that
more closely match the gene models than TAU and
Cufflinks (Table 1). TAU uses known splice sites to pre-
dict all possible putative exons for a gene, resulting in a
vast number of IR events that represent 85% of its AS
predictions (Figure S2 in Additional file 1 demonstrates
the issue). There is a noticeable discrepancy in the rate
at which Cufflinks detects exon skipping events. Exon
skipping accounts for 9% of the AS events in the gene

Figure 3 Ambiguities in RNA-Seq data. This figure demonstrates ambiguities that arise in RNA-Seq data that make isoform prediction
challenging. Because there is read coverage across several introns, SpliceGrapher is not able to determine whether this is a result of a single
intron retention event, or several independent events.

Rogers et al. Genome Biology 2012, 13:R4
http://genomebiology.com/2012/13/1/R4

Page 6 of 17



models, whereas 43% of the novel AS events predicted
by Cufflinks with gene models are ES. Detection of an
exon skipping event requires a novel splice junction,
and therefore depends on accurate splice junction detec-
tion. Both TAU and Cufflinks ignore the sequence char-
acteristics of putative junctions, a practice that can
easily lead to false positives. SpliceGrapher uses splice
site classifiers to ensure the accuracy of reads that span
splice junctions. We believe that the lower rate of exon
skipping detected by SpliceGrapher is a result of better
control of the quality of splice junction alignments.
Below we discuss this issue in detail.

Splice junction reads
We compared splice-junction read predictions made by
the three packages. We restricted this comparison to
junctions within known genes that were bounded by
canonical GT-AG or GC-AG splice sites. Accurate
splice junction alignments are crucial to the quality of
AS predictions. This is illustrated in Figures S4 to S8 in
Additional file 1. SpliceGrapher uses its splice-site classi-
fiers to predict donor and acceptor sites that are then
used to build a database of putative splice junction
sequences. Short reads that align to these sequences
provide evidence of splicing events recapitulated in the
RNA-Seq data. Supersplat performs spliced alignment
by attempting to map each end of a read to locations in
the genome. It accepts alignments where a read’s ends
match genomic sequences with 100% identity and the
inferred intron length is within specified limits. TopHat
maps spliced reads by splitting the reads into segments,
aligning the segments to genomic sequences, and
accepting spliced alignments when they infer introns
that are bounded by canonical GT-AG splice-site dimers
and have lengths within specified limits.

Although the three packages find similar numbers of
reads that span splice junctions, there is a sizable discre-
pancy in the number of novel splice junctions that were
detected. For example, TopHat detected 14,572 novel
splice junctions in A. thaliana. Only 1,982 of those were
also detected by SpliceGrapher. Out of the 12,590 that
were not detected by SpliceGrapher, 9,942 contained a
putative splice site that was classified as a false-positive
by our splice-site classifiers. Our classifiers achieve very
high accuracy in A. thaliana, with an area under the
receiver operating characteristic (ROC) curve between
0.95 and 0.97 for GT, GC, and AG sites (see Materials
and methods section for details, and ROC curves in Fig-
ure S9 in Additional file 1). Therefore, the false positives
identified in Table 3 for the alignments produced by
TAU and Cufflinks are likely accurate.
Our use of a filtering step raises the concern that we

are removing legitimate splice junctions, despite the
high accuracy of the splice junction classifiers. As
further validation, we compare the rate at which each
package recapitulates splice junctions that are observed
in a large collection of EST alignments. For A. thaliana
the ESTs consisted of 1.5 million sequences from the
National Center for Biotechnology Information (NCBI)
dbEST database [37] and 71,806 sequences from [35],
making a total of 1.6 million ESTs that aligned to 4,696
(16.5%) A. thaliana genes. For V. vinifera we down-
loaded 352,984 ESTs from the Plant Genome Database
[38]. These ESTs aligned to 10,168 (43%) V. vinifera
genes. The ESTs were aligned using a pipeline devel-
oped in [32], which uses GMAP [39] to align ESTs to a
reference genome, and then assigns aligned ESTs to
gene regions and corrects alignment artifacts. The
results in Table 4 show that the three packages had a
similar proportion of RNA-Seq junctions that matched

Table 2 Recall of TAIR9 and TAIR10 annotations

TAIR9 TAIR10

Recall Novel Transcripts Recall

Method Exons Introns Exons Introns Number Percentage Exons Introns

Splicegrapher 1.00 1.00 1,428 1,282 28 1.4% 0.039 0.045

Splicegrapher + EST 1.00 1.00 11,299 3,557 38 1.9% 0.050 0.056

Cufflinks

No gene models 0.25 0.19 33,252 3,425 0 0.0% 0.035 0.017

With gene models 0.94 0.89 12,690 5,222 4 0.2% 0.017 0.008

TAU

No gene models 0.21 0.29 86,346 5,335 0 0.0% 0.043 0.029

With gene models 0.69 0.79 115,130 3,734 11 1.1% 0.079 0.074

Comparison of the ability of SpliceGrapher, Cufflinks, and TAU to predict TAIR9 and TAIR10 annotations in A. thaliana. The columns of the table provide recall
levels of TAIR9 annotations, the number of novel exons and introns that are predicted, i.e., are not in the TAIR9 annotations, the number and percentage of
TAIR10 transcripts that are predicted, and the recall level of TAIR10 annotations at the exon and intron level. When TAU and Cufflinks rely on RNA-Seq data alone
they tend to produce graphs that are missing many of the features found in the gene models, as reflected in their recall scores between 0.19 and 0.29. When we
provide them with TAIR9 annotations their recall scores improve, though TAU’s improved statistics result from a vast number of novel exons, many of which may
be spurious. When comparing these predictions with novel splice forms in the TAIR10 gene models, SpliceGrapher predicts more novel splice forms correctly
than the other packages.
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junctions from the ESTs in both species. SpliceGrapher
had the highest proportion of matches in A. thaliana
and the second-highest in V. vinifera, indicating that its
predictions were not adversely affected by the splice
junction filtering step.
We next illustrate that spliced alignment filtering is

important, even as read length increases. To do so, we
generated 41 million 76-nucleotide reads for A. thaliana
and created a set of shorter reads by truncating the 76-

nucleotide reads to 32 nucleotides; we then ran TopHat
on the two sets. We used the same TopHat parameters
in both cases except for the segment length, which we
set to 20 nucleotides for the 32-nucleotide reads and 26
nucleotides for the 76-nucleotide reads. The 76-nucleo-
tide reads produced more than four times as many
spliced alignments as their truncated counterparts; the
shorter reads resulted in a slightly larger number of
ungapped alignments since their full-length versions

Figure 4 Example of a Cufflinks prediction. We provide the predictions made by Cufflinks for the same gene whose SpliceGrapher
predictions are shown in Figure 1. Some of the splice junctions used by Cufflinks are predicted to be false positives by SpliceGrapher’s accurate
splice junction classifiers (red edges in the plot). These lead to detection of questionable AS events.
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might span splice junctions (see Table S2 in Additional
file 1 for details). The additional spliced alignments for
76-nucleotide reads increased the number of novel junc-
tions more than six-fold, but the proportion of false-
positive junctions also jumped from 24% to 39%. These
results demonstrate the value of increased read length
for sensitivity in splice junction detection, and yet longer
read length alone does not guarantee accurate splice
junction predictions.
Inaccurate spliced-alignment can have a strong impact

on the accuracy of AS detection. To demonstrate this,
we looked at the splice junctions predicted by TAU and
Cufflinks and collected statistics for the AS events asso-
ciated with those junctions that SpliceGrapher’s classi-
fiers identified as false positives (Table S3 in Additional
file 1). We identified spurious splice junctions as those
that contained at least one false-positive splice site.
With gene models, 24% of the AS events predicted by
Cufflinks could be attributed to spurious splice junc-
tions, compared to 59% without gene models. Note that
the percentages were computed with respect to AS
events that are not in the TAIR9 annotations, so do not
depend on the algorithm’s access to the annotations.

With TAU we also saw a decrease in the percentage of
false positive events when provided with gene models.
Each of the three packages use somewhat different cri-

teria for accepting splice-junction alignments. Both
Supersplat and TopHat allow users to control maximum
allowed intron length; SpliceGrapher on the other hand
only accepts splice junctions that are within a single
gene. We have found many examples where TAU and
Cufflinks predicted splice junctions that span two genes;
with TAU for example, we found 309 cases of splice
junctions that span multiple genes in A. thaliana and
341 cases in V. vinifera.

Incorporating ESTs
To demonstrate SpliceGrapher’s ability to incorporate
multiple forms of data into splice graph predictions, we
ran it with the A. thaliana RNA-Seq data and provided
the EST alignments described above. Figure 5 illustrates
the benefit of combining RNA-Seq data and EST align-
ments for predicting splice graphs. In this example,
ESTs provided evidence for an IR event that was not
detected in the RNA-Seq data because read coverage
was not consistent across the entire intron. RNA-Seq,
on the other hand, provides evidence for alternative 3’
splicing events. The predicted graph then incorporates
the full range of evidence into a single coherent splice
graph.
The addition of EST data increased the number of AS

events from 7,388 to 9,916 and the number of genes
where AS is observed from 4,901 to 6,162. The graphs
augmented with EST alignment information contain
novel AS events in proportions that were much closer
to the proportions in the TAIR9 models than graphs
predicted using RNA-Seq alone. Notably, the proportion
of IR events is the same as in the gene models,

Table 3 Comparison of splice junctions identified by each package

SpliceGrapher Supersplat TopHat

A. thaliana

Canonical junctions (GT-AG/GC-AG) within genes 80,421 84,744 83,367

Junctions in common - 74,821 63,710

Novel junctions 4,969 7,255 14,572

Novel junctions with a false-positive site - 3,077 9,942

Novel junctions in common - 3,599 1,982

V. vinifera

Canonical junctions (GT-AG/GC-AG) within genes 74,457 82,281 65,439

Junctions in common - 70,554 59,154

Novel junctions 9,831 13,394 6,307

Novel junctions with a false-positive site - 4,040 1,899

Novel junctions in common - 8,020 3,662

Side-by-side comparison of canonical splice junctions identified by each package, reconciling differences between SpliceGrapher and the other two packages for
A. thaliana (top half) and V. vinifera (bottom half). For each species we show the number of canonical splice junctions each package found recapitulated in the
RNA-Seq reads. For Supersplat and TopHat we also show the number of junctions each shares with SpliceGrapher and the number of novel junctions for which
SpliceGrapher’s classifiers identified either the donor site or the acceptor site as a false positive.

Table 4 Recall of splice junctions identified from EST
data

Species SpliceGrapher Supersplat TopHat

A. thaliana 24,757 25,590 22,934

V. vinifera 35,403 37,291 34,081

We compared the splice junctions that each package identified in RNA-Seq
data to splice junctions inferred from ESTs aligned to A. thaliana and V.
vinifera. Numbers represent the number of splice junctions from spliced
alignments of RNA-Seq data that were also identified from alignments of ESTs
(excluding junctions that are annotated in TAIR9). Despite performing a step
of filtering of false positives, SpliceGrapher achieves a higher level of recall
than TopHat, and only slightly lower than SuperSplat.
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demonstrating the utility of ESTs for detecting IR
events. Finally, the level of recall of TAIR10 annotation
has resulted in a large increase with the addition of the
EST data (Table 2).

Applying SpliceGrapher to mammalian genomes
To demonstrate SpliceGrapher’s utility with mammalian
genomes, we used a subset of the human RNA-Seq data
used in [40] to compare AS in 60 individuals. We

focused on the two individuals for whom a much larger
set of reads was available. The data consisted of 74 mil-
lion paired-end 35-nucleotide reads from two indivi-
duals: Caucasian (35.7 million reads) and Yoruban (38.3
million reads). ENSEMBL gene models were used as
additional input to SpliceGrapher.
Based on Homo sapiens gene models, SpliceGrapher’s

classifiers achieved ROC scores of 0.97, 0.95 and 0.91
for GT, AG and GC splice sites, respectively. These

Figure 5 SpliceGrapher prediction from RNA-Seq and EST data. This example shows how SpliceGrapher can use both RNA-Seq data and
EST data to produce predictions that incorporate the strengths of each data type. RNA-Seq data provide evidence for two novel splice junctions
(fourth panel down, highlighted in green) that SpliceGrapher uses to infer an alternative 3’ splicing event. EST alignments provide compelling
evidence for an intron retention event. SpliceGrapher combines these predictions into the final predicted graph.
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classifiers predicted 25.3 million potential splice sites
out of 105.2 million dimers that occurred within genes.
Because of the longer gene length in human, the
approach of creating a splice junction database was not
feasible. Instead, we used TopHat to perform spliced
alignments and filtered the results using our predicted
splice site database.
We ran TopHat with default parameter settings to

align both data sets. Our classifiers flagged close to 60%
of the splice junctions in both datasets as false-positives
(Table S4 in Additional file 1). This is in comparison to
14% in Arabidopsis and 58% in grape, which is further
illustration of the potential pitfalls in splice junction
alignment of short reads.
Using the filtered TopHat splice junction alignments,

we found 1,099 novel AS events in the Caucasian sam-
ple and 1,154 novel AS events in the Yoruban sample.
The original paper reported statistics on 110 AS events
in genes where genetic variation impacted differential
alternative expression, while our predictions span the
whole genome. The various types of AS are predicted at
rates similar to those in the gene models with the nota-
ble exception of IR, which was relatively hard to predict
from plant RNA-Seq as well. The number of novel AS
predictions in the two samples were similar for each AS
type. Full details are provided in Table S5 in Additional
file 1; Figure S10 in Additional file 1 shows an example
where we identified a difference in the observed pattern
of AS in the two samples.

Conclusions
We have presented SpliceGrapher, a Python scripting
package designed to enhance existing gene annotations
by predicting splice graphs from RNA-Seq and EST
data. In addition, SpliceGrapher includes modules for
identifying AS events and for viewing predicted splice
graphs along with the evidence used to generate them.
We compared SpliceGrapher to TAU and Cufflinks;

unlike these packages, which make somewhat limited
use of gene models, SpliceGrapher exploits gene annota-
tions fully to construct its splice graphs. This allows
SpliceGrapher to make meaningful predictions even for
genes that have low read coverage, and helps us resolve
AS events that are otherwise hard to detect from short-
read data. Prediction of AS requires accurate alignment
across splice junctions, which is a difficult task when
read length is short. Our work demonstrates that using
tools that do not use information about splice site char-
acteristics can lead to a large number of possibly erro-
neous alignments. SpliceGrapher addresses this issue by
using a machine learning approach to construct a data-
base of potential splice sites that can be used to filter
the output of a spliced alignment method such as
TopHat, or to construct a database of potential splice

junctions that allow the use of standard mapping tools
that do not perform spliced alignment. The latter
approach is only feasible for more compact genomes
like the plant genomes we analyzed here.
We have demonstrated SpliceGrapher on RNA-Seq

data from human and two plants, A. thaliana and V.
vinifera. Plant genomes have different architectures
from mammalian genomes and are therefore character-
ized by different types of AS events. In particular, IR is
rare in mammalian genomes, but is the dominant form
of AS in plants. Most existing work on predicting AS
from short-read data has focused on exon skipping in
mammals [1,18,19,41-44]. We have shown that Splice-
Grapher is able to predict different forms of AS,
although the rate at which it detects intron retention is
lower than its observed frequency in existing annota-
tions. This is due to the inherent difficulty in predicting
intron retention from RNA-Seq data, which requires
consistent read coverage across an entire intron.

Materials and methods
RNA-Seq data
In our experiments, we used publicly available short-
read sequence data for the plants A. thaliana and V.
vinifera. We downloaded FASTQ sequence files contain-
ing 284 million A. thaliana reads (accession number
[SRA:009031]) and 59 million 36-nucleotide V. vinifera
reads (accession number [SRX:012280]) from the NCBI
Sequence Read Archive [45]. A. thaliana reads were
trimmed to 32 nucleotides as recommended in [3]. As
baseline annotation for A. thaliana we used the TAIR9
genome annotations [46]; the newer TAIR10 annota-
tions were used for evaluation. For V. vinifera we used
the Genoscope version 2 annotations and sequences,
using only those sequences for the 19 best-characterized
chromosomes. Additional RNA-Seq data were generated
for A. thaliana as follows. Total RNA from 2-week-old
A. thaliana (ecotype Columbia) seedlings grown on MS
(Murashige and Skoog medium) plates was isolated
using RNeasy Plant Mini Kit from Qiagen (Valencia,
CA, USA). To remove any contaminating DNA, RNA
was treated with DNAse [47]. Isolation of poly (A)
mRNA and preparation of a cDNA library were carried
out using the Illumina TrueSeq RNA kit. Sequencing
(72 cycle) was done on an Illumina Genome Analyzer II.
This dataset, which altogether has 41 million reads, has
been deposited in NCBI’s Gene Expression Omnibus
[48], and is accessible through GEO series accession
number [GSE:32318].

The SpliceGrapher pipeline
SpliceGrapher’s pipeline for predicting splice graphs
uses several forms of data. Gene models are loaded
directly into a splice graph that serves as a baseline for
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interpreting the RNA-Seq and EST data. Data from
RNA-Seq experiments is aligned to the reference gen-
ome; ungapped alignment is carried out first, and all
unaligned reads undergo spliced alignment, to infer
reads that span splice junctions. SpliceGrapher can
accept short-read alignments provided by a variety of
tools [9-12,14-17]. EST and cDNA sequences are aligned
using conventional sequence alignment tools [39,49]
before SpliceGrapher includes the alignments in a splice
graph. As SpliceGrapher loads each form of data, it inte-
grates the new evidence with the gene models to con-
struct a splice graph.

Splice graph construction
Each of the data sources used by SpliceGrapher-genome
annotations, short-read data, and EST alignments-
requires a distinct interpretation for splice graph con-
struction. For the following discussion of the procedures
used to interpret each type of data we borrow terminol-
ogy from [29] and refer to exons that have explicit
acceptor and donor splice sites as ‘bounded’ and those
with an undefined acceptor or donor splice site as
‘unbounded’. When one graph element, such as an exon
or an intron, falls completely within the genomic coor-
dinates of another graph element, we say that it is ‘con-
tained’ within the other element.
Gene models
SpliceGrapher accepts gene model annotations in GFF3
format [50] and constructs graphs using the sequence
coordinates found in UTR, CDS and exon records. It
interprets exon records as bounded exons and incorpo-
rates them directly into a splice graph. SpliceGrapher
infers an intron whenever the corresponding exons are
adjacent in a transcript. When an exon appears in mul-
tiple transcripts, a single exon node is created along
with edges that link it to the exons that follow or pre-
cede it in the corresponding transcripts.
RNA-Seq data
To incorporate RNA-Seq data into a splice graph, Spli-
ceGrapher loads read alignments in SAM format [51]
for all reads that map within the boundaries of some
annotated gene. It then constructs exons (hereafter
referred to as ‘short-read exons’) from clusters of contig-
uous ungapped alignments where the read depth
remains above a minimum threshold (the default is 0).
A short-read exon is discarded if it is contained within
an existing exon. If a short-read exon does not extend
exactly to known or predicted acceptor or donor splice
sites, SpliceGrapher will extend it to the nearest splice
site that is known or has support from spliced reads.
EST alignments
Because they are longer than RNA-Seq reads, ESTs pro-
vide more reliable transcriptional evidence. In our fra-
mework we run EST alignments through a series of

processing steps designed to remove alignment artifacts
[32] and convert the alignments directly to splice-graphs
using the same procedures we developed for gene mod-
els. Exons at the 3’ or 5’ end of an EST are considered
unbounded. These are merged with other exons in the
graph according to the following rules. An exon that is
unbounded at its 3’ end is merged with another exon if
they share the same acceptor site and both exons are
unbounded at the 3’ end. If one of the exons is
bounded, the exons will be merged only if the
unbounded exon is contained within the bounded exon.
Analogous rules apply to exons unbounded at the 5’
end. SpliceGrapher infers an intron between exons
whenever they are adjacent in an EST.

Alternative splicing inference from RNA-Seq
Because of their short length, RNA-Seq data cannot be
unambiguously interpreted as splice-graphs and AS
events (Figure 3). SpliceGrapher’s approach is to use as
much data as possible to make confident predictions,
and to annotate AS events as unresolved if the evidence
does not clearly support a specific isoform. SpliceGra-
pher applies inference rules in the order presented in
the following sections.
Intron retention
IR is arguably the most challenging form of AS to infer
from RNA-Seq data. SpliceGrapher infers IR events
from RNA-Seq evidence in two ways that exploit infor-
mation from the gene models. When short-read cover-
age remains above a desired threshold across an intron’s
full length, it is evidence that the intron was retained in
some transcripts (Figure 1). In this case the intron is
excised in the constitutive form represented by the gene
model. In an alternative scenario shown in Figure S11 in
Additional file 1, the intron is retained in the known
constitutive form. We detect this form of IR when a
known exon has a novel splice junction within it.
When SpliceGrapher infers a novel IR event, it must

identify unique exon boundaries for three exons: the
longer exon in which the intron is retained, and the two
shorter exons that flank the intron when it is excised.
Usually the gene model provides good evidence for
these boundaries, but in some cases it may not be possi-
ble to resolve them unambiguously.
When short-read coverage remains high across an

intron’s full length, SpliceGrapher will create a short-
read exon that spans the intron. Its next task is to deter-
mine the exon’s correct boundaries. SpliceGrapher first
finds all exons in the graph that overlap the short-read
exon. If one upstream exon overlaps its 5’ end and one
downstream exon overlaps its 3’ end, SpliceGrapher cre-
ates a new exon whose boundaries are the acceptor site
from the upstream exon and the donor site from the
downstream exon. If more than one exon overlaps either
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end of the short-read exon, it is still possible to infer the
new exon’s boundaries provided all overlapping
upstream exons share the same acceptor site and over-
lapping downstream exons share the same donor site
(Figure S12 in Additional file 1). If the boundary at
either end is ambiguous, SpliceGrapher creates an unre-
solved IR event. When a junction is used to infer an IR
event through the scenario of a splice junction within
an exon, SpliceGrapher must identify the boundaries for
two new exons, which is performed in a manner analo-
gous to the single exon case.
In some cases read coverage may remain high across

two or more introns in succession, making it impossible
to determine which of several possible splice forms is
correct (Figure 3). In these cases, SpliceGrapher anno-
tates the corresponding short-read exon as unresolved.
Alternative 3’ and 5’ events
When an intron is excised at more than one splice site,
changing the boundaries of one of its flanking exons, we
have evidence of an alternative 3’ or 5’ event. SpliceGra-
pher uses two forms of evidence to infer alternative 3’/5’
events. When a short-read exon overlaps an existing
exon but extends beyond its 3’ or 5’ end, it provides evi-
dence for an alternative donor or acceptor site. In addi-
tion, when a novel splice junction appears between two
exons it provides evidence for a novel intron (Figure
S12 in Additional file 1). SpliceGrapher requires both
forms of evidence to infer a novel alternative splice site.
Below we describe the procedure for inferring an alter-
native acceptor (3’ site). The procedure for an alterna-
tive donor (5’ site) is analogous.
When a short-read exon overlaps an existing exon and

extends into its upstream intron, it is evidence that the
exon boundaries changed in some transcripts. To iden-
tify an acceptor site for the new exon, SpliceGrapher
looks for junctions that have acceptor sites within the
same intron, upstream of the short-read exon (Figure
S12 in Additional file 1). SpliceGrapher then uses the
acceptor site nearest the short-read exon as its acceptor
site. If it finds no acceptor sites within the intron, Spli-
ceGrapher annotates the short-read exon as unresolved.
If SpliceGrapher can resolve a new exon’s acceptor

site, it must resolve its donor site as well. The procedure
is the same as that for identifying retained intron
boundaries in the previous section. If one downstream
exon overlaps the new exon’s 3’ end, SpliceGrapher uses
the downstream exon’s donor site as the new exon’s
donor site. If more than one downstream exon overlaps
the new exon’s 3’ end, SpliceGrapher can still resolve its
donor site provided all overlapping exons share the
same donor site (Figure S12 in Additional file 1). If the
overlapping exons have different donor sites, SpliceGra-
pher cannot resolve the new exon’s donor, and it anno-
tates the exon as unresolved.

Exon skipping
An exon skipping event occurs when an exon is
excised from some transcripts but included in others.
SpliceGrapher infers skipped exons in two different
ways. In the first scenario the exon is included in the
known constitutive form represented in the gene
model. If a novel splice junction spans the existing
exon, it is evidence that the exon was skipped in some
transcripts (see top panel of Figure S13 in Additional
file 1). If the novel junction’s acceptor and donor sites
match those of established exons, SpliceGrapher adds
the new intron to the graph and annotates the skipped
exon.
An alternative scenario is when the exon is skipped in

the constitutive form (bottom panel of Figure S13 in
Additional file 1). In this case, if a short-read exon falls
within an intron and is flanked by two novel junctions,
it is evidence for a novel exon that is skipped in some
transcripts. These clues may not provide enough evi-
dence to resolve the event, so SpliceGrapher tries to
associate the upstream junction’s donor site and the
downstream junction’s acceptor site with exons in the
graph. If this first step is successful, SpliceGrapher uses
the upstream junction’s acceptor site as the new exon’s
acceptor site and the downstream junction’s donor site
as the new exon’s donor site. If it is unable to resolve
the junctions, SpliceGrapher annotates the short-read
exon as unresolved.

Splice graph assembly
The above rules are used to infer exons from gene mod-
els, ESTs and short-read data. The final step consists of
adding edges (introns) that connect consecutive exons.
For each newly predicted exon, SpliceGrapher looks for
other exons in the graph that use the same acceptor
site. If any of these exons has an intron from its accep-
tor site to a neighboring exon, SpliceGrapher adds an
edge from the neighboring exon to the new exon. It
repeats the process for all exons that have the same
donor site. SpliceGrapher uses an analogous procedure
to infer introns for the donor site of a new exon. Graphs
are stored using a GFF file format.

Splice graph comparisons
TAU and Cufflinks predict transcripts that we convert
into splice graphs associated with annotated genes. As
de novo prediction tools, both TAU and Cufflinks make
predictions without regard to known gene boundaries.
Thus, to perform a meaningful comparison we associate
each transcript with one or more genes that it overlaps.
Once transcripts are associated with annotated genes,
they are converted to splice graphs using the same pro-
cedure SpliceGrapher uses to assemble splice graphs
from ESTs.
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In order to compare a predicted splice graph with the
splice graph generated from genome annotations, we
compare the number of exons and introns from the
gene model that are recapitulated. This is quantified
using the ‘recall’ statistic. The recall of a set A with
respect to a set B is defined as:

R(A|B) = A ∩ B
B

We define R(A|B) = 1 when B is the empty set. To
compare two splice graphs we compute recall for exons
and introns separately.

Short read alignment
SpliceGrapher includes modules that allow it to incorpo-
rate RNA-Seq data into splice graph predictions. It
accepts short read alignments in SAM format [51]. For
this project we used PASS [10] to perform short-read
alignments as we found it to be fast and accurate in pre-
liminary tests on synthetic data.
To provide high-confidence splice graph predictions,

we enforced strict criteria for accepting alignments. We
accepted only reads that aligned to the genomic refer-
ence with 100% identity at a unique location. To
increase confidence in these alignments, we also
required that a read align nowhere else in the genome
at 90% identity or above (a procedure adapted from
[13]). We used uniquely aligned reads to identify exonic
regions, and unaligned reads for splice-junction
alignments.

Splice junction reads
SpliceGrapher performs spliced alignment by first con-
structing a database of splice junction sequences that
are formed by concatenating the sequence directly
upstream of a donor site with the sequence directly
downstream of an acceptor site. We distinguish three
kinds of splice junctions: ‘known’ junctions that are
derived from gene model annotations; ‘recombined’
junctions constructed from novel combinations of
known splice sites; and ‘predicted’ junctions in which
one or both splice sites are novel. SpliceGrapher con-
structs junction sequences by pairing every known and
predicted donor site in a gene with all known and pre-
dicted acceptor sites downstream of it in the same gene.
This procedure has been used in other studies (see, for
example, [1,18,19]) to construct a database of known
and recombined splice junctions from known splice
sites. SpliceGrapher extends this procedure to include
predicted sites as well.
To avoid spurious alignments, we require that junc-

tion-crossing reads align with a minimum 10-nucleotide
overlap on either side of a junction. Adopting

nomenclature from [14], we refer to the 10-nucleotide
region on either side of a junction as the ‘anchor’ region.
For reads of length n and a required overlap size p, we
can enforce this constraint by generating splice junction
sequences of length 2(n-p). For example, for 32-nucleo-
tide reads and a required 10-nucleotide minimum over-
lap, we generated 44-nucleotide sequences (22
nucleotides on either side of a junction). To improve
sensitivity, we accepted alignments with 90% identity
overall, provided they aligned with 100% identity within
the anchor region.
The three pipelines each used slightly different align-

ment criteria. Our SpliceGrapher pipeline allowed mis-
matches in exonic alignments so that we could identify
and eliminate reads that aligned well to multiple loca-
tions. We also accepted mismatches in splice-junction
alignments to improve sensitivity, provided there were
no mismatches within anchor regions. We used TopHat
parameters that allowed us to duplicate our own align-
ment criteria, though TopHat accepts mismatches
within splice-junction anchor regions. Supersplat accepts
only reads that align with 100% identity within anchor
regions.

Splice site prediction
We classify splice sites using support vector machines,
using an approach that has been shown to be highly
accurate in splice site prediction [12,15,52,53]. To create
splice site classifiers, SpliceGrapher extracts positive and
negative example sequences for splice site donor and
acceptor dimmers such as GT, GC and AG following
the procedure described in [52]. Briefly, we use known
splice sites as positive examples for a given dimer and
for negative examples we use all other occurrences of
the dimer found within genes. Training examples then
consist of intronic and exonic sequences taken from
either side of a site.
SpliceGrapher’s classifiers discriminate sequences

using an implementation of the weighted-degree kernel
[52]. This kernel represents a sequence in a feature
space of k-mers associated with positions in the
sequence. Kernel parameters include exon and intron
sequence lengths on either side of a splice site, k-mer
length, number of mismatches to allow within a k-mer,
and whether to allow shifts in k-mer position (for a
detailed overview, see [54]). SpliceGrapher iterates over
combinations of these parameters to identify the best-
performing combination. It uses the PyML package [55]
to train and test these support vector machines using
the training examples described above. SpliceGrapher
executes this procedure for all given acceptor and donor
dimers to yield a classifier for each one. It then applies
each classifier to corresponding dimers in the genomic
reference sequences. Locations classified as splice sites
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contribute a pool of predicted sites that SpliceGrapher
combines with known splice sites when it generates
splice junction sequences. The Palmapper package [15]
uses a similar set of classifiers, but evaluates acceptor
and donor sites during spliced alignment instead of
creating a splice junction database.
In predicting splice sites we focused on canonical GT

and GC donor sites and AG acceptor sites. For A. thali-
ana, we used SpliceGrapher with TAIR9 annotations to
extract 122,534 annotated GT, GC and AG splice sites.
SpliceGrapher created splice site classifiers for GT and
GC donor sites and AG acceptor sites. These classifiers
achieved ROC scores of 0.97, 0.97 and 0.95 for GT, GC
and AG sites, respectively, in five-fold cross-validation.
ROC curves are provided in Figure S9 in Additional file
1. These classifiers predicted novel splice sites for
878,994 out of 9,753,440 dimers (9%) found within
genes in the TAIR9 reference sequences. Combining
these predicted sites with known splice sites, we gener-
ated a splice junction database with 8.2 million junc-
tions, out of which 122,534 are known and 586,704 are
recombined.
For V. vinifera, SpliceGrapher extracted 125,080 anno-

tated GT, GC and AG splice sites from the gene models.
The splice-site classifiers achieved ROC scores of 0.91,
0.81 and 0.88 for GT, GC and AG sites, respectively, in
five-fold cross-validation. As V. vinifera is not as well
annotated as A. thaliana, we decided to use the EST
alignments described earlier to obtain better splice site
models. We used SpliceGrapher to extract 84,811 splice
sites from these alignments, and used them to improve
our splice site models. The resulting classifiers achieved
ROC scores of 0.98, 0.92 and 0.96 for GT, GC and AG
sites, respectively, considerably higher than those based
on the gene models. The ROC curves are shown in Fig-
ure S9 in Additional file 1. These classifiers predicted
2.2 million putative splice sites out of 11.2 million
dimers (20%) within genes in the reference sequences.
The resulting splice junction database contains 91 mil-
lion splice junction sequences, out of which 125,080 are
known, and 616,314 are recombined.

HashMatch/Supersplat/TAU
We ran HashMatch and Supersplat [17] on the two data
sets, following the procedures outlined in [3]. We first
used HashMatch to perform ungapped read alignment.
We then perform spliced alignment with Supersplat
using those reads that did not result in a match in
ungapped alignment. Supersplat performs alignment
without regard for splice site dimers, so for a more rea-
listic comparison we accepted only alignments that
spanned canonical dimers. Supersplat accepts minimum
and maximum intron lengths and anchor region size. It
is prudent to select conservative intron sizes to prevent

TAU from generating an inordinate number of tran-
scripts. For A. thaliana we established an intron size
range of 40 to 5,000, as 99.9% of known introns fell
within this range. For V. vinifera the same criterion
yielded an intron size range of 55 to 15,000. To fix a
lower bound for overlaps on either side of a junction,
we set the minimum anchor size to 10, and accepted
only reads that aligned to a unique splice junction. All
experiments used Supersplat version 1.0 and TAU ver-
sion 1.4 (no version information was available for
HashMatch).

BowTie/TopHat/Cufflinks
TopHat and Cufflinks were designed for mammalian
genomes and thus rely on some heuristics that are
based on mammalian gene expression statistics and
gene architecture. For example, TopHat’s heuristic filter
for spliced alignments is based on the observation that,
in humans, minor splice forms usually have expression
levels that are at least 15% as high as those of their cor-
responding major splice forms [14]. Another heuristic
embedded into TopHat is to report only alignments
across GT-AG introns for reads shorter than 75
nucleotides.
We ran TopHat on the A. thaliana data using para-

meters that reflected the requirements we set for our
own alignments: no multi-hits (-g 1), minimum anchor
length 10 (-a 10), and minimum and maximum intron
length 40 and 5,000, respectively (55 and 15,000 for V.
vinifera). TopHat splits reads into segments for part of its
search. To permit reads to align at 90% identity, we set
the segment length to 20 (–segment-length = 20) and
allowed up to 2 mismatches per segment (–segment-mis-
matches = 2). To eliminate the heuristic filter associated
with mammalian genomes, we set the minimum normal-
ized depth to 0 (-F 0). To make our comparison as fair as
possible, we also ran TopHat with –segment-mismatches
= 0 to force it to accept only alignments with 100% iden-
tity. We then approximated our own alignment criteria
by using TopHat’s ungapped alignments at 100% identity
and its spliced alignments at 90% identity. The remaining
difference between TopHat’s splice-junction alignments
and ours was a subset of TopHat read alignments that
contained mismatches in the anchor region. All experi-
ments used Bowtie version 4.1.2, TopHat version 1.3.3
and Cufflinks version 1.1.0.

Additional material

Additional file 1: Supplementary information. Includes a section on
validating SpliceGrapher predictions with evidence from other
experiments, plus supplementary tables and figures.
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