
Open Access2009Dobrinet al.Volume 10, Issue 5, Article R55Research
Multi-tissue coexpression networks reveal unexpected subnetworks 
associated with disease
Radu Dobrin*, Jun Zhu*, Cliona Molony*, Carmen Argman*, 
Mark L Parrish*, Sonia Carlson*, Mark F Allan†§, Daniel Pomp†‡ and 
Eric E Schadt*¶

Addresses: *Rosetta Inpharmatics, LLC, Merck & Co., Inc., Terry Avenue North, Seattle, Washington 98109, USA. †Department of Animal 
Science, University of Nebraska, Lincoln, NE 68508, USA. ‡Department of Nutrition, Cell and Molecular Physiology, Carolina Center for 
Genome Science, University of North Carolina, Chapel Hill, NC 27599, USA. §Current address: Pfizer Animal Health, Animal Genetics Business 
Unit, East 42nd Street, New York, NY 10017, USA. ¶Current address: Pacific Biosciences, 1505 Adams Dr, Menlo Park, CA 94025, USA. 

Correspondence: Eric E Schadt. Email: eric_schadt@merck.com

© 2009 Dobrin et al.; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Obesity networks<p>Tissue-to-tissue coexpression networks between genes in hypothalamus, liver or adipose tissue enable identification of obesity-specific genes.</p>

Abstract

Background: Obesity is a particularly complex disease that at least partially involves genetic and
environmental perturbations to gene-networks connecting the hypothalamus and several metabolic
tissues, resulting in an energy imbalance at the systems level.

Results: To provide an inter-tissue view of obesity with respect to molecular states that are
associated with physiological states, we developed a framework for constructing tissue-to-tissue
coexpression networks between genes in the hypothalamus, liver or adipose tissue. These
networks have a scale-free architecture and are strikingly independent of gene-gene coexpression
networks that are constructed from more standard analyses of single tissues. This is the first
systematic effort to study inter-tissue relationships and highlights genes in the hypothalamus that
act as information relays in the control of peripheral tissues in obese mice. The subnetworks
identified as specific to tissue-to-tissue interactions are enriched in genes that have obesity-relevant
biological functions such as circadian rhythm, energy balance, stress response, or immune response.

Conclusions: Tissue-to-tissue networks enable the identification of disease-specific genes that
respond to changes induced by different tissues and they also provide unique details regarding
candidate genes for obesity that are identified in genome-wide association studies. Identifying such
genes from single tissue analyses would be difficult or impossible.

Background
Significant successes identifying susceptibility genes for com-
mon human diseases have been obtained from a plethora of
genome-wide association studies in a diversity of disease
areas, including asthma [1,2], type 1 and 2 diabetes [3,4],

obesity [5-8], and cardiovascular disease [9-11]. To inform
how variations in DNA can affect disease risk and progres-
sion, studies that integrate clinical measures with molecular
profiling data like gene expression and single nucleotide pol-
ymorphism genotypes have been carried out to elucidate the
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network of intermediate, molecular phenotypes that define
disease states [12,13]. However, in almost all cases the focus
has been on single tissue analyses that largely ignore the fact
that complex phenotypes manifested in mammalian systems
are the result of a complex array of networks operating within
and between tissues. Nowhere is this complexity more appar-
ent than in studies of obesity.

Obesity is a particularly complex disease involving genetic
and environmental perturbations to networks connecting
peripheral tissues such as adipose, muscle, stomach, intes-
tine, liver, and pancreas with the hypothalamus, resulting in
an energy imbalance that affects the system as a whole. With
more than 30% of adults in the US overweight or obese (body
mass index >30) [14], a dramatic increase in the progression
of obesity rates in children aged 2 to 19 years [15], and the fact
that obesity is a principal cause of type 2 diabetes [16] and
results in an increased risk of asthma, certain forms of cancer,
cardiovascular disease and stroke, obesity is truly a disease of
significant public health concern. Because of this, significant
effort has been undertaken to understand the underlying
mechanisms critical to the development of obesity. While
many of these efforts have shown great promise, they are also
revealing a more complex picture of obesity than was previ-
ously thought, consisting of highly integrative, interactive
and multi-tissue physiological control.

Energy storage is a complex event in any organism. In higher
organisms like mammals, multiple tissues interact to ensure
adequate energy storage. A key to understanding obesity is
deciphering the paths along which molecules move as well as
the signals that control these processes. While white adipose
tissue is the primary organ for longer-term storage of energy
in the form of triglycerides, it is also a very dynamic compart-
ment within the body. In fact, white adipose tissue can be con-
sidered among the most active endocrine organs, secreting
hormones like leptin, adiponectin, tumor necrosis factor-α,
interleukin-6, estradiol, resistin, angiotensin, and plasmino-
gen activator inhibitor-1. The active state of this organ is evi-
dence enough that it does not act in isolation. In fact, it is
already well established that the brain receives signals
through small molecules like leptin and insulin circulating in
the blood, and through sympathetic and parasympathetic sys-
tems. The central nervous system has proven to be a primary
player in maintaining energy homeostasis, where it is
believed that the brain acts as an 'energy-on-request' system,
with a hierarchical organization in which the hypothalamus
plays a central role [17,18]. Using the neuronal tracer cholera
toxin B and the retrograde neuronal tracer pseudorabies
virus, Kreier et al. [19] showed that the autonomic nervous
system exhibited a distinct organization through sympathetic
and parasympathetic innervations. In addition, inactivation
of the insulin receptor in brain has been shown to induce
hyperphagia and obesity [20]. Further, leptin plays a funda-
mental role in regulating food intake and long-term energy
homeostasis [21]. The inhibition of hypothalamic arcuate

nucleus neurons that co-express the agouti-related protein
(Agrp) and neuropeptide Y (Npy) by activating the phos-
phatidylinositol 3-kinase pathway, is achieved in a manner
that is independent of the STAT3 pathway [22]. Alternatively,
leptin activates the JAK/STAT3 pathway in pro-pomelacortin
neurons [23].

The regulatory processes that ensure intra-tissue coherence
(for example, transcription factors) may differ from those
that drive biological coherence between tissues. We hypothe-
size that if genes have correlated expression patterns across
tissues, they are more likely to react to the information
exchanged between them rather than to be driven by regula-
tory events specific to each tissue. Therefore, in a disease like
obesity, where the hypothalamus receives and integrates sig-
nals from peripheral tissues (for example, adipose and liver)
and actively sends signals to manage energy balance, tissue-
to-tissue coexpression (TTC) networks may highlight com-
munication between tissues and elucidate genes or sets of
genes active in one tissue that are able to induce gene activity
changes in other tissues.

Results
Given the complex array of processes driving obesity in mul-
tiple organs, we profiled gene expression in adipose, liver and
hypothalamus from F2 progeny from a cross between the out-
bred M16 (selectively bred for rapid weight gain) and ICR
(control) mouse strains (referred to here as the MXI cross)
[24,25]. After constructing coexpression networks for each
tissue independently, we identified subnetworks (modules) of
highly interconnected sets of genes enriched for common
functional categories in the Gene Ontology (GO). Tissue-spe-
cific coexpression networks, especially when integrated with
DNA variation and clinical data, have led to a number of
important discoveries and have for some time now repre-
sented the state of the art in elucidating molecular networks
underlying complex phenotypes [26-29]. Topologically, coex-
pression networks are part of a larger class of scale-free net-
works [30] that include the majority of known biological
networks such as metabolic, transcriptional regulatory and
protein-protein interactions [13], as well as the class of
uncharacterized, TTC networks. Therefore, we constructed
TTC networks from adipose, liver and hypothalamus profiles.
A comprehensive analysis of these networks revealed a scale-
free topology, with single gene expression traits in one tissue
correlating with larger numbers of expression traits in other
tissues (that is, hub nodes operating across tissues), suggest-
ing that information is passed between tissues in an asym-
metric fashion. The asymmetric information relay is observed
to be much more common for hypothalamus than for either
adipose or liver, suggesting that hypothalamus is the control-
ling tissue. We demonstrate how these TTC networks comple-
ment our knowledge stemming from single tissue analyses,
revealing a new dimension in expression networks: cross-tis-
sue specific subnetworks.
Genome Biology 2009, 10:R55
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We generated high-quality TTC networks from each possible
pair of tissues by identifying significantly correlated expres-
sion traits from matched adipose, hypothalamus and liver
samples collected from F2 mice, resulting in three cross-tissue
specific networks that were constructed using 308 mice for
adipose-hypothalamus (AH; Table T7 in Additional data file
1), 298 for hypothalamus-liver (HL; Table T8 in Additional
data file 1) and 302 for adipose-liver (AL; Table T9 in Addi-
tional data file 1). Nodes in the TTC networks represent gene
expression traits from each tissue in the TTC network; thus,
by adipose gene we mean expression levels corresponding to
the gene in adipose tissue, and similarly for hypothalamus
and liver genes. Two nodes in a TTC network are connected if
the gene expression traits are significantly correlated across
the two tissues with respect to a predefined significance
threshold. Therefore, unlike classical tissue-specific coex-
pression networks, TTC networks are bipartite graphs with
respect to the corresponding tissues (there are no links
between genes in the same tissue). To test for correlation

between gene expression traits, we used the non-parametric,
rank-based Spearman correlation, given this measure makes
fewer underlying assumptions on the distribution of the cor-
relation under the null hypothesis and is more robust to out-
liers compared to parametric correlation measures. The
appropriate significance level was determined by assessing
the network-specific false discovery rate (FDR) for these cor-
relations where we estimated empirically the null distribution
using permutation methods (see Materials and methods). For
all the TTC networks, we used a fixed P-value threshold of 10-

8, which corresponds to an FDR <0.1% in all three networks.

The TTC networks for the three tissue pairs are very similar
with respect to their global topological properties (Figure 1).
The connectivity distributions depicted in Figure 1c follow a
power-law distribution for genes in either tissue, which is
indicative of a scale-free network in which a small proportion
of genes serve as hub nodes (that is, a gene connected to a very
large number of other genes). The scale-free nature of these

Tissue-to-tissue networks summaryFigure 1
Tissue-to-tissue networks summary. (a) Display of the adipose-hypothalamus (AH) TTC network at a P-value threshold of 10-8. Red and green edges 
denote negative and positive correlations, respectively. Adipose nodes in the network are marked as green circles while hypothalamus nodes are marked 
as red diamonds. The networks display a high degree of modularity, as can be seen visually. The largest connected component of the network contains 
roughly 70% of all of the nodes in the network. (b) The all-pairs shortest path distributions F(d) (d is the shortest path between a pair of nodes in the 
network) for the TTC networks: AH in black, hypothalamus-liver (HL) in red, and adipose-liver (AL) in blue. The diameter of the networks (dAH = 8,728, 
dHL = 7.420, dAL = 4.926) are dependent on whether hypothalamus is part of the network or not. (c) Connectivity distributions P(k) (connectivity k is the 
number of edges connecting a gene) for adipose, hypothalamus and liver nodes in each of the three TTC networks exhibit scale-free behavior P(k)~k-γ with 
γ = 1. (d) TTC networks summary. All the values reported are for TTC networks generated at a P-value threshold of 10-8. The number of positive 
correlations in the TTC networks is twice that of the negative correlations.
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networks increases the likelihood that correlations between
tissues are highly asymmetric in this population. For exam-
ple, in the AH network the top 1% connected genes in either
tissue are unique with no overlap. At the same time, from the
143 genes that are symmetric (that is, the number of correla-
tions for these genes in both tissues is the same), the maxi-
mum connectivity is only 21, with 79 genes in this set singly
connected. The most connected hypothalamus gene in this
network is Aqp5, which is linked to 169 adipose genes, while
the adipose gene Aqp5 is only linked to 2 genes in hypothala-
mus. Similar examples can be found in the other two TTC net-
works. Asymmetric connectivity is an indicator of
information exchange between tissues. In the above example,
Aqp5 in the hypothalamus is either 'sending' information to
the 169 adipose genes (that is, regulating expression of the
169 adipose genes) or 'integrating' (responding to) their sig-
nals. Only a genetically engineered mouse model in which
Aqp5 is specifically perturbed in the hypothalamus could pro-
vide the detailed information needed in order to determine
the direction of the information flow between tissues and rule
out alternative explanations, such as the asymmetric connec-
tivity obtaining via a 'hidden' third factor. It is plausible that
the exchange of information between tissues is mediated
through other clinical traits, such as plasma insulin, glucose,
hormone levels, ion concentrations, metabolite concentra-
tions and so on. If we were able to collect all possible 'interme-
diate' traits, then we could apply our standard causality
procedure [29] to test whether gene expression traits in one
tissue are supported as causal for such clinical traits, and then
construct a new causality model that will test whether these
gene expression traits in a different tissue were supported as
reactive to the clinical trait; or whether gene expression traits
in both tissues were supported as reactive to the clinical traits.
In such a case we could begin to differentiate whether a given
tissue was supported as causal for, or was associated with,
gene expression changes in a different tissue.

While the topological properties of the TTC networks are
largely the same, the diameters of these networks, defined as
the mean shortest distance between nodes in the network, are
significantly different. The AH and HL networks have similar
diameters almost twice as large as the AL network diameter.
Similarly, the distributions of distances between genes (Fig-
ure 1b) are similar for the AH and HL networks, with the AL
network exhibiting a much narrower distribution. If we con-
sider the hypothalamus as a primary controlling organ in the
body, the TTC networks confirms that the network diameter
is representative of the relationship between the tissues
within the organism, with the network between metabolic tis-
sues (AL) being more compact (thus having a small diameter)
than networks that involve a controlling organ (HL and AH).

To understand whether TTC networks provide additional
insights into the system under study, we examined whether
these networks overlapped significantly with tissue-specific
coexpression networks. Similar to TTC networks, we gener-

ated gene-gene coexpression (GGC) networks for each tissue
using the Spearman correlation measure. The 9,967 genes
(Table T3 in Additional data file 1) included in the construc-
tion of the tissue-specific coexpression networks were those
genes that were either present in at least one of the TTC net-
works or that were significantly differentially regulated (com-
pared to the reference pool) in at least 10% of the samples.
Because expression traits identified with synergies between
the tissues were not necessarily the most correlated traits in
the single tissue analyses, the overlap between the expression
traits in the TTC networks and those in the tissue-specific
coexpression modules is not 100%. Interestingly, about 40%
of expression traits in the TTC networks fell outside of the tis-
sue-specific network modules defined by each tissue, with the
exception of a few highly overlapping modules in each tissue
(Figure 2). This finding was unexpected and reveals a new
facet of coexpression networks that complements single tis-
sue analyses.

To assess whether this result was caused by our choice of P-
value thresholds, we examined the connectivity distributions
for each tissue at the same P-value threshold used to con-
struct the TTC networks (10-8), while simultaneously generat-
ing the connectivity distribution for all genes in the TTC
network originating from a given tissue. From the connectiv-
ity distribution plots in Figures 2c we note a clear trend for
nodes in the TTC networks having reduced connectivity in the
hypothalamus and adipose coexpression networks, without
any apparent peak at any of the connectivity values. This
demonstrates that expression traits in the TTC network are
enriched for genes that could not be placed into any of the tis-
sue-specific coexpression network modules. That is, expres-
sion traits in the TTC network demonstrate a high degree of
correlation with expression traits between tissues, but not
within tissues. Therefore, via the TTC networks, we have
identified entire classes of genes that are systematically
ignored in single tissue analyses because they form, on aver-
age, no meaningful connections with other genes within a
given tissue, but instead are enriched for genes in one tissue
that are strongly connected with genes in a different tissue.

To understand more fully how TTC networks differ from tis-
sue-specific coexpression networks, we identified coherent
subnetworks (commonly referred to as modules or clusters)
that reflect different biological functions associated with
these parts of the network. The algorithm we employed parti-
tions the network by removing edges with high betweenness
scores as previously described [31], segregating the TTC net-
works into robust subnetworks (details in Materials and
methods; Figure S11 in Additional data file 1). Several other
methods [32,33] were tested and led to only minor differ-
ences in the subnetworks identified, reflecting the strong
modular structure that is apparent by visual inspection of the
TTC networks (Figure 3). In the AH network we identified 45
subnetworks (Table T10 in Additional data file 1) labeled
based on their size, with C1 being the largest subnetwork, con-
Genome Biology 2009, 10:R55
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taining 485 nodes, and C45 being the smallest with only 7
nodes.

In order to see whether the correlations between genes across
tissues could be driven by common genetic effects, we exam-
ined the extent to which genes in a given subnetwork were
clustered in common chromosomal regions. Using P-values
obtained from the Fischer's exact test (FET) [34] to estimate
the degree of overlaps between the TTC subnetworks and
genes in a given chromosomal region, we found two types of
subnetworks. Type 1 subnetworks were composed of genes
enriched in common chromosomal regions, while type 2 sub-
networks exhibited no apparent enrichment. Figure 3a high-
lights this segregation in the AH network.

To assess whether the type 1 subnetworks were the result of
common genetic control, we carried out genome-wide linkage
analysis on each expression trait to map expression quantita-
tive trait loci (eQTL). For a given expression trait we consid-
ered an eQTL proximal if the eQTL position was coincident
with the location of the corresponding structural gene
(referred to here as a cis-eQTL). Otherwise, we considered the
eQTL distal (referred to here as a trans-eQTL). Interestingly,
nearly all of the genes in the type 1 subnetworks gave rise to
cis-eQTL (Figure S12 in Additional data file 1). The magnitude
of the effects and proximity of the cis-eQTL in a given type 1
subnetwork suggest that the chromosome-specific correla-
tion patterns are artifacts of gene expression traits controlled
by closely linked genetic loci, as we have previously shown

Single tissue projections to the adipose-hypothalamus TTC networkFigure 2
Single tissue projections to the adipose-hypothalamus TTC network. (a) Adipose and hypothalamus modules (color shaded rectangles) derived from 
independent analysis of each tissue's GGC network and their overlap with the AH network. Each tissue-specific module is shaded based on the percentage 
overlap relative to the module size (the shading scale shown next to the modules). The black lines between modules represent edges identified in the AH 
network. (b) Percentage overlap of GGC modules relative to the TTC network: top adipose modules and bottom hypothalamus modules. The black stairs 
show the percentage overlap that is observed by chance. The yellow bar represents genes that were not placed in single tissue modules and contains 
approximately 40% of all genes found in the TTC network. (c) Percentage overlaps between the subset of adipose and hypothalamus genes from the AH 
network and the adipose genes (top panel) and hypothalamus genes (bottom panel). Each bar represents the percentage of genes with connectivity k in the 
corresponding single tissue (the x-axis) that are part of the TTC network. We can see that expression traits that do not correlate with many other traits 
in a single tissue are more likely to be found in the TTC network.
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[29,35]. At the very least, whether the correlations among
gene expression traits in type 1 subnetworks can be attributed
to common upstream regulators is confounded by the corre-
lation structure induced by closely linked cis-eQTL. On the
other hand, type 2 subnetworks in the TTC networks con-
tained only genes that do not have a detectable cis-eQTL,
indicating these genes were more likely to be correlated
because of biologically relevant covariation in their expres-
sion levels. Therefore, for all further analyses we restricted
attention to those TTC subnetworks that were not enriched
for genes with cis-eQTL in common chromosomal regions
(that is, FET P > 0.05 for the overlap between genes with cis-
eQTL and genes in a given type 1 subnetwork), as depicted in
Figure 3b for the AH network.

One way to establish the biological coherence of a given gene
subnetwork is to test whether genes in a given subnetwork are
enriched for genes involved in known biological pathways or
genes associated with clinical traits [12,28]. Therefore, we
tested whether type 2 subnetworks in the TTC networks were
enriched for GO biological process (GOBP) terms containing
no more than 1,000 genes and for genes correlated with any

of the 64 obesity-associated traits scored in the MXI cross.
When calculating enrichments for the TTC subnetworks, it is
important to remember that unlike tissue-specific coexpres-
sion networks, the TTC subnetworks contain two species of
nodes corresponding to each tissue.

For the AH network we found several subnetworks enriched
in GOBP categories for either adipose or hypothalamus genes.
Figure 3d highlights the GOBP terms that exceed the P-value
threshold in the AH network. We observed the same pattern
of enrichment for genes associated with the obesity traits
(Figure 3c). The clinical trait-gene correlations were calcu-
lated using the Spearman correlation measure. Genes identi-
fied as correlated to a specific obesity trait had corresponding
P-values significant at an FDR level of 5% using Benjamini-
Hochberg correction [36]. Regardless of the FDR level there
were far fewer hypothalamus genes whose expression was
correlated with obesity traits compared to adipose genes.
When looking globally at all expression profiles at a 10% Ben-
jamini-Hochberg FDR level we found liver weight to be the
trait most correlated with hypothalamic gene expression,
with 34 hypothalamus genes associated with this trait. On the

Adipose-hypothalamus network partitioning and analysisFigure 3
Adipose-hypothalamus network partitioning and analysis. (a) Network highlight based on chromosomal location and cis expression quantitative trait loci 
(eQTL) status. Each node is colored according to chromosomal location with different colors for different chromosomes. Large nodes correspond to 
genes that have cis-eQTL. Two types of subnetworks are observed in the network: type 1 subnetworks that contain genes located on the same 
chromosome that also have cis-eQTLs; and type 2 subnetworks with genes that are neither located on the same chromosome nor have cis-eQTLs. (b) 
Highlighted are all the type 2 subnetworks, as identified by the partitioning algorithm. (c) P-value heatmap for the association between clinical traits and 
gene expression traits for the type 2 subnetworks. The heatmap scale ranges from 1 (green) to 10-10 (red). All P-values smaller than 10-10 are set to 10-10. 
For a detailed description of clinical traits see Materials and methods. (d) Gene Ontology enrichments for type 2 subnetworks of size greater than 10. To 
validate the robustness of the overlap, we recorded the number of GO biological process (GOBP) terms when the FDR corrected P-values resulting from 
the Fischer's exact test, -log10(P-value), exceeded 2 and 3. The 'Top GOBP' column lists the GOBP terms that have the lowest Fischer's exact test P-value.
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other hand, epididymal (males) or perimetrial (females) fat
mass was the trait most significantly associated with adipose
mRNA levels, with 977 genes significantly correlated with
these traits. We thus expect that subnetwork enrichments for
the hypothalamus genes associated with clinical traits will be
harder to detect than for adipose genes associated with clini-
cal traits.

Networks offer a plethora of information that is often hard to
interpret given the density of the different subnetwork com-
ponents. To extract the most reliable information from the
TTC networks, we defined the network backbone (see Materi-
als and methods) to be composed of a limited number of
highly correlated genes. As seen in Figure 4 for the AH net-
work, the backbone contains only 613 nodes and 725 edges
representing 21.78% and 6.32% of the nodes and edges,
respectively, from the original network (Table T13 in Addi-

Adipose-hypothalamus network backboneFigure 4
Adipose-hypothalamus network backbone. We define the network backbone as the bonds most visited by the all-pair shortest paths algorithm on the 
TTC network. In order to generate a robust backbone, we assigned P-values of Spearman correlations as bond weights. The subnetworks selected for 
further analysis are represented by a small number of representative genes on the backbone. Perturbing these genes most likely triggers responses in the 
complementary tissue.
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tional data file 1). Each subnetwork contributes to the back-
bone with its most representative genes, which helps to
identify the core relationships from the network (Figure 4).

Discussion
Combining the TTC subnetwork enrichment analysis with
information gathered from the network backbone, the picture
emerging for obesity is that of a complex network composed
of genes that have been intensively studied as well as genes
that have never before been considered as molecular compo-
nents of biologically relevant pathways. Between adipose and
hypothalamus we find several TTC subnetworks that are
associated with precise biological functions. As highlighted by
the AH network backbone in Figure 4, the C2 subnetwork is
at the center of the AH network. This subnetwork is enriched
for genes associated with obesity and for genes involved in
circadian rhythm. Some genes in this subnetwork, such as
Arntl, Dbp, Per1, and Per2, are known to associate with obes-
ity traits, while other genes, such as Map3k6 and Tsc22d3,
represent novel factors.

In addition to the clock regulators mentioned above, the C2
subnetwork includes three other genes that are also part of
the backbone and that are essential for cellular response to
starvation: Sgk, Pdk4 and Acot1. Subnetwork C3 contains
hypothalamus genes that are linked to adipose heat shock
genes Hsp110 and Dnajb1. Another important hypothalamus
gene from C3 that correlates with adipose Hsp110 is Fem1b, a
gene required for normal glucose homeostasis and pancreatic
islet cell function [37]. C3 also contains several highly linked
genes like Dnajb1 and Chordc1 that are known to be down-
regulated in the sleep phase [38]. Both C2 and C3 appear to
be separated based on circadian patterns, with C2 containing
genes up-regulated in mice during sleep and C3 containing
several heat shock protein genes that are up-regulated while
mice are awake. These subnetworks are very close to each
other, with C2 appearing to play a more central role (Figure
4). Two other highly asymmetric subnetworks emerge from
the AH analysis: C5, containing the hypothalamus water
channel gene Aquaporin 5 (Aqp5), the most highly connected
hypothalamus gene, and C10, containing the hypothalamus
gene Phox2a, which correlates with 84 adipose genes, the
third most highly connected hypothalamus gene. Aqp5 is a
gene that belongs to the AQP family of major intrinsic mem-
brane proteins, which function as molecular water channels
to allow water to flow rapidly across plasma membranes in
the direction of osmotic gradients. Phox2a is a paired-like
homeodomain transcription factor that participates in speci-
fying the autonomic nervous system by controlling the differ-
entiation of sympatho-adrenal precursor cells [39,40]. The
AH subnetwork C23 is enriched for adult feeding behavior
and energy balance and contains well known genes such as
those encoding agouti related protein (Agrp) and neuropep-
tide Y (Npy), and also Ptx3, a gene recently reported to asso-
ciate with obesity that is involved in immune system response

and modification in feeding behavior [41,42]. C7 is enriched
for immune response signaling through the interferon family
of genes. The most highly connected nodes in C7 are hypoth-
alamus genes Ifi44, Irf7, Tgtp, Sp100 and Trim30.

Two recent papers describing genome-wide association stud-
ies [43,44] found a number of novel loci associated with obes-
ity (weight or body mass index) in human populations,
raising the total number of loci validated to influence obesity
in humans to 24. While genome-wide association studies are
incredibly powerful for identifying the ultimate causal
changes in DNA that associate with diseases like obesity, they
often do not directly indicate the gene or genes that are
affected by the DNA change, and they do not provide a con-
text within which to interpret action of the causal genes and
how they lead to variations in the disease of interest. There-
fore, the next challenge is to understand the mechanisms
through which these candidate genes act on energy storage
and balance. The suggestion from these previous studies is
that neural development plays an important role in obesity.
We used the TTC networks described above to elucidate pos-
sible mechanisms of how these genes affect obesity pheno-
types. When compared with clinical QTLs of fat and weight,
only 3 of the 24 published human genes (Aif1, Bat2 and Ncr3
ortholog) are within 5 cM of clinical QTL peaks. Bat2 and
Ncr3 ortholog do not have cis-eQTL in any tissues. Aif1 (allo-
graft inflammatory factor 1), which has a cis-eQTL in hypoth-
alamus, was reported to be associated with weight [43];
itcontributes to anti-inflammatory response to vessel wall
trauma. When looking at single tissue networks, we find Aif1
in adipose module 5 and liver module 6, both of which are
enriched for GOBP inflammatory response. Although Aif1 has
a cis-eQTL in hypothalamus, it does not belong to any module
in the hypothalamus network. When we looked at the TTC
networks we observed that Aif1 was a hub node in all three, as
shown in Figure 5. In the AL network, liver Aif1 is linked to 63
adipose genes (Figure 5a), while adipose Aif1 is linked to 16
liver genes (Figure 5b). Both gene sets are enriched for inter-
feron-mediated immune response genes. Remarkably, we
found Aif1 in the HL and AH networks, where hypothalamus
Aif1 is linked to immune response genes like H2-Eb1 and H2-
Ea (Figure 5c) in both adipose and liver. Hypothalamus Aif1
is also linked to Lta and Faim2, genes that regulate apoptosis
and also reported as associated with obesity [43]. The TTC
network findings suggest that hypothalamus Aif1 is associ-
ated with both obesity and diabetes.

Conclusions
By constructing cross-tissue networks we provided a global
view of the gene expression patterns across hypothalamus,
liver and adipose tissue in mice confronted with an abnormal
state such as obesity. The TTC networks constructed between
tissue pairs reflect subnetworks that are not represented in
tissue-specific networks, highlighting the importance of con-
sidering interactions among molecular states in entire sys-
Genome Biology 2009, 10:R55
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tems to fully characterize complex traits like obesity. The
subnetworks we identified as specific to the TTC networks are
composed of genes already known to associate with obesity as
well as new molecular components that are not well described
in the current literature. The asymmetry reflected in the TTC
networks provides direct support that these networks repre-
sent cross-tissue communication. A central characteristic of
all the TTC networks is that the circadian subnetwork is at the
center of the TTC networks and connects to all other subnet-
works in the network (see Figure 4 for the AH network). It is
well established that disregulation of several genes in the cir-

cadian subnetwork lead to obesity by disrupting energy bal-
ance and glucose homeostasis [45-47]. In a recent paper
Lamia et al. [48] used a liver-specific Bmal1-/- mouse model
to show that deletion of the circadian gene Bmal1 (Arntl) in a
peripheral tissue such as liver leads to systemic glucose
homeostasis disruptions, although they had normal body fat
content compared to the controls. This finding is supported
by the TTC networks where Arntl and several other circadian
genes are central components and also emphasizes that key
regulators in each tissue are required to work in synchrony.
The fact that liver Arntl did not have a global effect on body

Genome-wide association obesity gene Aif1 in TTC networksFigure 5
Genome-wide association obesity gene Aif1 in TTC networks. Detailed view of TTC network connections for Aif1 identified in genome-wide association 
studies as associated with obesity. Nodes are colored based on the tissue of origin for the mRNA profile, such that white, blue and red are gene 
expressions in adipose, liver and hypothalamus, respectively. Rectangle nodes denote genome-wide association candidate genes for obesity. (a) Liver Aif1 
and its connection to hypothalamus and adipose tissue. (b Adipose Aif1 and its connections to liver. (c) Hypothalamus Aif1 and its connections to liver and 
adipose.
Genome Biology 2009, 10:R55
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weight is reflected by the structure of the AL network where
adipose Arntl has 521 connections, outranking liver Arntl
with only 83 connections.

Only by looking at the system as a whole can we begin to iso-
late key molecular networks that are associated with the dis-
ease and are not reflected in single tissue networks or in
studies of in vitro cell systems. TTC networks identify genes
related to communication between tissues and provide a first
step toward understanding complex diseases like obesity in
terms of the hierarchy of interacting molecular networks that
define physiological states in mammalian systems.

Materials and methods
Resource population
Selection leading to the present M16 line was originally con-
ducted in two replicate lines (M16-1 and M16-2 [49]). The two
replicates were subsequently crossed to form the present M16
line, which was maintained (along with the control line ICR)
by within-family random selection for approximately 100
generations prior to establishment of the QTL mapping pop-
ulation used in this study.

A large F2 population (n = 1,181) was established by inter-
crossing the M16 and ICR lines, whose phenotypes were
recently described [24]. Twelve F1 families resulted from six
pair matings of M16 males × ICR females and six pair matings
of the reciprocal cross. A total of 55 F1 dams were mated to 11
F1 sires in sets of five F1 full sisters mated to the same F1 sire.
These same specific matings were repeated in three consecu-
tive replicates. Thus, the F2 population consisted of approxi-
mately 55 full-sib families of up to 24 individuals each and 11
three-quarter-sib families of up to 120 individuals each. All
litters were standardized at birth to eight pups, with approxi-
mately equal representation of males and females, and were
weaned at 3 weeks of age with mice provided ad libitum
access to water and pellet feed (Teklad 8604 rodent chow).
Mice were then caged individually from 4 to 8 weeks of age.
The University of Nebraska Institutional Animal Care and
Use Committee approved all procedures and protocols.

Phenotypic data collection
Body weights were measured at weekly intervals from 3 to 8
weeks of age. From 4 to 8 weeks of age, feed intake was
recorded for all F2 mice at weekly intervals. At 8 weeks of age,
following a period of 1.5 h where feed was removed but access
to water remained, mice were decapitated after brief exposure
to CO2. Blood was collected from the trunk, and blood glucose
was measured using the SureStep Blood Glucose Monitoring
System (LifeScan Canada, Burnaby, British Columbia, Can-
ada). The subcranial region was scanned in a consistent, dor-
sal position using a dual-energy X-ray absorption (DEXA)
densitometer (PIXImus, Lunar, Madison, WI, USA). The
DEXA measurements estimated two primary body composi-
tion characters in each mouse: total subcranial tissue mass

(TTM, in grams) and total subcranial fat (FAT, in grams).
After scanning, each carcass was dissected and weights of the
liver, right hind limb subcutaneous adipose depot, and right
epididymal (males) or perimetrial (females) adipose depot
were recorded. These and other tissues, including hypothala-
mus, pituitary, gastrocnemius muscle, heart, spleen, kidney
(with adrenal) and tails, were collected and snap frozen in liq-
uid nitrogen.

Analysis of plasma proteins
All F2 males were measured for plasma levels of insulin, lep-
tin, tumor necrosis factor-α, and interleukin 6 using a single
multiplex reaction (run in duplicate) based on microsphere
bead technology (Linco, St. Louis, MO, USA) using a
Luminex100 system (Luminex, Austin, TX, USA). Raw data
were processed using Masterplex QT (Miraibio, Alameda, CA,
USA); plate-to-plate variation was normalized using a stand-
ard sample on all plates.

RNA sample preparation and hybridization
Global expression analysis was determined using the 23,574-
feature mouse Rosetta/Merck Mouse TOE 75k Array 1 (Gene
Expression Omnibus (GEO) Platform: GPL 3562; Agilent
Technology, Palo Alto, CA, USA). Total RNA from hypothala-
mus samples (n = 308) where isolated and hybridized using
the protocol described in Brandish et al. [50]. This method
utilizes a Moloney murine leukemia virus reverse tran-
scriptase-mediated reverse transcription and double-
stranded cDNA production, followed by T7 RNA polymerase
transcription. The resultant RNA is further amplified with a
second round of reverse transcription and in vitro transcrip-
tion incorporating amino-allyl UTP. Total RNA from liver
samples (n = 302) and adipose samples (n = 308) was iso-
lated from frozen tissue. For liver and adipose, 5 μg of total
RNA was used for each amplification reaction. The method
used a custom automated version of the Reverse Transcrip-
tion/In Vitro Transcription (RT/IVT) method referenced in
Hughes et al. [51]. Labeled cRNA from each F2 animal was
hybridized against a pool of labeled cRNAs constructed from
equal aliquots of RNA from 160 F2 animals for each of the
three tissues in the cross that was balanced for sex and litter.
Samples failing amplification were excluded from the pools.
Sample hybridization and array scanning for all three tissues
were performed as described [51]. Microarrays were scanned,
and individual feature intensities were pre-processed in a
series of steps, consisting of background subtraction, normal-
ization to mean intensities of the Cy3 and Cy5 channels, and
detrending to fit a linear relationship between channels [52].
Normalized intensities were used to derive expression ratios
using the Rosetta error model [52,53]. Expression ratios
obtained in this study are available for query or download
from the GEO website at the National Center for Biotechnol-
ogy Information [54] as the following series:
[GEO:GSE13745] (hypothalamus), [GEO:GSE13746] (adi-
pose) and [GEO:GSE13752] (liver).
Genome Biology 2009, 10:R55
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Single tissue co-expression network construction and 
module detection
Constructing coexpression networks
Coexpression networks were constructed by defining gene-
gene relations based on a similarity measure. For gene
expression data measured in a large number of individuals
the most natural similarity measure between two expression
traits is the correlation coefficient. The Spearman correlation
measure was used in this case. Only genes identified in the
TTC networks together with genes that were differentially
expressed (relative to the reference pool) in at least 5% of the
samples in each of the tissues were used for creating the tis-
sue-specific co-expression networks. The P-value threshold
was set to 10-8, identical to the threshold used for the TTC net-
works.

Identifying gene modules
GGC networks are highly connected. The clustering results
highlighted in Figure 3 and Supplementary Figure S3 in Addi-
tional data file 1 reflect that there are modules arranged hier-
archically within these networks. Ravasz et al. [55] used
manually selected height cutoff to separate tree branches
after hierarchical clustering, in contrast to Lee et al. [56], who
formed maximally coherent gene modules with respect to GO
functional categories. We employed a measure we previously
developed and validated [57] that is similar to that used by
Lee et al. [56], but without the dependence on the GO func-
tional annotations. Briefly, a gene module in the co-expres-
sion network was defined as a maximum set of inter-
connected genes. We defined the coherence of a gene module
as:

where GPobs is the number of gene pairs that are connected,
and GPtot is the total number of possible gene pairs in the
module. The efficiency of a gene module was defined as:

where Gmod is the number of genes in the module, and Gnet is
the number of genes in the network. Given these definitions,
the process employed to iteratively construct gene modules
consisted of the following steps: step 1, order genes in the
gene-gene connectivity matrix according to an agglomerative
hierarchical clustering algorithm as previously described
[51]; step 2, calculate the efficiency ei, j for every possible mod-
ule, including genes from i to j as given in the ordered connec-
tivity matrix, where j ≥ i + 9 (that is, minimum module size is
10), using a dynamic programming algorithm; step 3, deter-
mine the maximum ei, j:

step 4, go to step 3 until no additional modules can be found.
The program for identifying the network modules was imple-
mented in MATLAB 7.0.1 (MathWorks, Natick, Massachu-
setts, USA).

Tissue-to-tissue coexpression network construction 
and subnetwork partitioning
Network construction
We constructed the TTC networks from gene expression data
of individuals that had both tissues relevant to the network
profiled. As a consequence, the number of samples varied
from network to network. For the AH TTC network we had
308 samples, for HL 298, and 302 samples for the AL TTC
network. The correlation between two expression traits from
different tissues was computed using the Spearman correla-
tion measure. A P-value threshold of 10-8 corresponding to an
FDR <0.1% was used for each of the TTC networks. The FDR
was assessed using permutations.

Identifying tissue-to-tissue coexpression subnetworks
The method chosen to partition the network is based on the
betweenness centrality measure as previously defined [31].
On the TTC network, the algorithm finds the edge most used
by shortest paths between all possible pairs of nodes in the
networks, removes it and repeats these two steps until no
edge is left in the network. In order to increase the running
time of the algorithm at each step, we removed closed subnet-
works, defined as a subnetwork for which the maximum dis-
tance between any pair of nodes is 2, or if the number of nodes
in a subnetwork is 2. All other subnetworks we call viable sub-
networks. To find the best network partition, we selected the
partition occurring at the point where the total number of via-
ble subnetworks is the maximum. After this maximum is
reached we observe a decrease in the number of viable clus-
ters as the algorithm removes edges between nodes.

Backbone detection for tissue-to-tissue coexpression 
networks
To construct the network backbone, we computed the
weighted edge betweenness [31] for all edges in the network.
An edge connected weight is equal to the P-value of the corre-
lation it denotes. Thus, a shortest path is defined as the path
between two genes along which the sum of edge weights is
minimum. An edge is part of the backbone if its scaled edge-
betweenness (defined as the total number of shortest paths
that contain that edge divided to N - 1, where N is the total
number of nodes in the network) is larger that 1. By weighting
the edges that connect genes in this manner we guaranteed
that the shortest paths would include the most highly corre-
lated genes in the network.

Abbreviations
AH: adipose-hypothalamus; AL: adipose-liver; eQTL: expres-
sion quantitative trait loci; FDR: false discovery rate; FET:
Fischer's exact test; GEO: Gene Expression Omnibus; GGC:
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gene-gene coexpression; GO: Gene Ontology; GOBP: Gene
Ontology biological process; HL: hypothalamus-liver; TTC:
tissue-to-tissue coexpression.

Additional data files
The following additional data are available with the online
version of this paper: supporting text, Figures S1 to S13 and
Tables T1 to T18 (Additional data file 1).

Additional data file 1Supporting text, Figures S1 to S13 and Tables T1 to T18Figure S1 shows the connectivity distribution P(k) for GGC net-works. Figure S2 shows FDR curves for each tissue in the analysis. Figure S3 shows modules in single tissue GGC networks as detected by the algorithm. Each cluster is marked by the yellow rectangles. Figure S4 shows single tissue module enrichment. Each panel has the following structure: top, P-values from FET for cis-eQTL blue bars over- and red bars under-enriched; middle, percentage over-lap between module and genes with cis-eQTL; bottom, percentage overlap between each module and genes on each chromosome. The scale is between green and black where green represents 0% over-lap and black 100% overlap. Figure S5 shows connectivity distribu-tion for TTC networks. In each panel we show connectivity distribution for both types of genes in the TTC networks as follows: (a) blue for adipose, red for hypothalamus; (b) blue for hypothala-mus, red for liver; (c) blue for adipose, red for liver. Figure S6 shows FDR curves for the TTC networks. Figure S7 shows a repre-sentation for the AH TTC network. Figure S8 shows a representa-tion for the HL TTC Network. Figure S9 shows a representation for the AL TTC network. Figure S10 shows the number of network par-tition versus edge removal time. In black we show total number of subnetworks at each edge removal step; in blue we show number of 'open' subnetworks from where we can potentially remove edges. The number is obtained by subtracting from the total number of subnetworks in the partition the subnetworks defined as 'closed'. Figure S11 shows TTC network partitioning. For each of the TTC networks we have highlighted the subnetworks obtained through partitioning. Each color represents a subnetwork. The AH and HL networks are much more modular than the AL network. Figure S12 shows TTC network enrichment. Each panel has the following structure: top, P-values from FET for cis-eQTL over- (blue bars) and under-enriched (red bars); middle, percentage overlap between module and genes with cis-eQTLs; bottom, percentage overlap between each module and genes on each chromosome. The scale is between green and black where green represents 0% over-lap and black 100% overlap. Figure S13 shows the TTC network backbones. Node color and symbols match the description from Figures 6, 7 and 8 in the main section of the paper. Each backbone contains the most robust links from the TTC network. Table T1 lists clinical trait descriptions. Table T2 lists microarray probe annota-tions. Table T3 lists the probes selected for single tissue analysis. Table T4 lists the adipose single tissue modules. Table T5 lists the hypothalamus single tissue modules. Table T6 lists the liver single tissue modules. Table T7 lists the AH TTC network. Table T8 lists the HL TTC network. Table T9 lists the AL TTC network. Table T10 lists the AH subnetworks. Table T11 lists the HL subnetworks. Table T12 lists the AL subnetworks. Table T13 provides the AH net-work backbone. Table T14 provides the HL network backbone. Table T15 provides the AL network backbone. Table T16 lists the adipose cis-eQTL genes. Table T17 lists the hypothalamus cis-eQTL genes. Table T18 lists the liver cis-eQTL genes.Click here for file
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