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Abstract

The vast majority of the biology of a newly sequenced genome is inferred from the set of
encoded proteins. Predicting this set is therefore invariably the first step after the completion of
the genome DNA sequence. Here we review the main computational pipelines used to generate

the human reference protein-coding gene sets.

The genome sequence is an organism’s blueprint: the set of
instructions dictating its biological traits. The unfolding of
these instructions is initiated by the transcription of the
DNA into RNA sequences. According to the standard model,
the majority of RNA sequences originate from protein-
coding genes; that is, they are processed into messenger
RNAs (mRNAs) which, after their export to the cytosol, are
translated into proteins. While the importance of noncoding
RNAs has come to the fore over the past ten years [1-5],
proteins are still assumed to be the main functional and
structural players in the cell. The delineation of the complete
set of protein-coding genes and their alternative splice forms
is, therefore, essential to the task of translating the informa-
tion in the sequence of the genome into biologically relevant
knowledge. This is not a trivial task, as illustrated by the fact
that many years after the first drafts of the human genome
sequence became available [6-8], uncertainty remains regard-
ing the exact number of protein-coding genes [9], a number
that might actually vary between individuals - and even
between cells within the same individual - as extensive struc-
tural variation has been reported in the human genome [10-12].

Even the concept of a ‘gene’ is under revision. Genes have
long been regarded as discrete entities located linearly along
chromosomes, but recent investigations have demonstrated

extensive transcriptional overlap between different genes.
Specifically, genomic regions from otherwise distinct and
apparently well characterized protein-coding loci (which
may be very far apart in linear genomic space) often appear
to combine to produce transcripts with the potential for
encoding novel protein species [13,14].

Despite all these caveats, delineating the set of protein-
coding genes is invariably the first step taken after
completing the DNA sequencing of a genome. Indeed, the
vast majority of the biology of a genome is initially inferred
from the set of proteins that genome is predicted to encode.
The gene-finding problem has consequently attracted wide
attention within the field of bioinformatics. Since the early
work of Fickett [15], in which methods were developed to
distinguish coding from noncoding regions, a plethora of
strategies have been explored and many methods developed
to elucidate the exonic structure of genes in eukaryotic
genomes. Figure 1 summarizes the main avenues of research.
The technical details underlying these computational methods
are reviewed in [16-18] and the references and URLs for the
methods are given in Additional data file 1. Here we will
focus on the strategies being applied to delineate a number
of reference human gene sets - the ones most widely used by
researchers in biology - and to assess their quality and
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Gene-finding strategies. Given a genome DNA sequence, information on the location of genes and transcripts can be obtained from different sources:
conservation with one or more informant genomes (1); intrinsic signals involved in gene specification, such as start and stop codons and splice sites (2);
the statistical properties of coding sequences (3); and, most importantly, known transcript sequences (either full-length cDNAs or partial ESTs) and
protein sequences (4). Over the past two decades, a plethora of programs and strategies has been developed to combine these sources of information to
obtain reliable gene predictions. The ‘intrinsic’ evidence from sequence signals and statistical bias can be combined (using a variety of frameworks often
related to hidden Markov models [59]), to produce gene predictions (6). These programs are often referred to as ab initio or de novo gene finders. They
are the programs of choice in the absence of known transcript or protein sequences or phylogenetically related genomes. If related genome sequences
are available, the intrinsic information can be combined with patterns of genomic sequence conservation using programs often referred to as comparative
(or dual- or multi-genome) gene finders (5). With these programs, maximum resolution is achieved when the compared genomes are at a phylogenetic
distance such that there is maximum separation between the conservation in coding and noncoding regions. To increase resolution, programs have been
developed that use multiple informant genomes. The most sophisticated use an underlying phylogenetic tree to appropriately weight sequence
conservation depending on evolutionary distance. If cDNA and EST sequences are available, these often take priority over other sources of information.
The initial map of the transcript or protein sequences onto the genome, which can be obtained using a variety of tools, including sequence-similarity
searches, is refined using more sophisticated ‘splice alignment’ algorithms, whose explicit splice-site models allow more precise alignment across gaps
corresponding to introns (8). Alternatively, cDNA and protein information can be fed into an ab initio gene-finder algorithm to give information on the
exons included in the prediction (7). Often, cDNA and protein evidence is only partial; in such cases, the initial reliable gene and transcript set may be
extended with more hypothetical models derived from ab initio or comparative gene finders, or from the genome mapping of cDNA and protein
sequences from other species. Pipelines have been derived that automate this multi-step process (9). More recently, programs have been developed that
combine the output of many individual gene finders (10). The underlying assumption in these ‘combiners’ is that consensus across programs increases the
likelihood of the predictions. Thus, predictions are weighted according to the particular features of the program producing them. The most general
frameworks allow the integration of a great variety of types of predictions - not only gene predictions, but also predictions of individual sites and exons.
Despite all the developments in computational gene finding, the most reliable and complete gene annotations are still obtained after the initial alignments
of cDNA and proteins onto the genome sequence are inspected manually to establish the exon boundaries of genes and transcripts (11). This is the task
carried out by the HAVANA team at the Sanger Institute. The initial manual annotation can be refined even further by subsequent experimental
verification of those transcript models lacking sufficiently strong evidence, as in the GENCODE project (12). Examples of gene-prediction programs (with
references and URLs) corresponding to each strategy outlined here are provided in Additional data file I.
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ENSEMBL browser. The ContigView page of the Ensembl browser representing the SPAG4 gene locus on chromosome 20 within the Encode region
ENr333. (a) The green transcript represents the CCDS coding region agreed on by the CCDS consortium. (b) The blue transcripts are the Vega
transcripts, which are manually annotated by the HAVANA group and are a mixture of coding (solid blues) and noncoding (blue outline) transcripts. (c)
Finally, the gold transcript represents the coding transcript on which the HAVANA and Ensembl annotations agree.

completeness. In addition, as transcript sequences (complete
or partial cDNAs) are among the most reliable evidence used
to annotate genes, we will also review a number of recent
surveys of the transcriptional activity of the human genome.
These, carried out using a variety of high-throughput tech-
nologies, have consistently reported a wealth of transcrip-
tional activity in the human genome that had apparently not
been captured through the large cDNA sequencing projects of
the past two decades. It is now apparent that current gene and
transcript annotation sets cover only a fraction of the total
transcriptional output of the human genome.

Human reference gene sets
Since the publication of the draft human genome sequence
in 2001 [6,7], a number of human gene reference sets have

been created using either computational prediction or
manual annotation or a mixture of the two methods. The
Ensembl project was initially set up to warehouse and
annotate the large amount of unfinished genomic data being
produced as part of the public human genome project, as
well as to provide browser capacity for both sequences and
annotations (Figure 2). Ensembl has expanded and now
generates automatic predictions for more than 35 species.
The Ensembl gene build process is based on alignments of
protein and ¢cDNA sequences to produce a highly accurate
gene set with a low rate of false positives [19].

Another genome browser supplying sequence and anno-
tation data for a large number of genomes is the University
of California, Santa Cruz (UCSC) genome browser database
[20]. In April 2007, UCSC released an improved version of
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their ‘Known Gene Set’ for the human genome and included
putative noncoding RNAs as well as protein-coding genes.
Each entry in this set requires the support of a GenBank
entry and at least one other line of evidence, except for
curated cDNAs, which require no other evidence.

Manual annotation still plays a significant part in annotating
high-quality finished genomes. Currently, the National
Center for Biotechnology Information (NCBI) reference
sequences (RefSeq) collection provides a highly (manually)
curated resource of multi-species transcripts, including plant,
viral, vertebrate and invertebrate sequences [21,22]. These
are, as their name indicates, transcript-oriented and usually
rely on full-length ¢cDNAs for reliable curation, although the
dataset also contains predictions using expressed sequence
tags (ESTs) and partial cDNAs aligned against genomic
sequence using the Gnomon prediction program [23].
Manually reviewed RefSeq nucleotide sequences begin with
the reference NM identifier whereas unreviewed predictions
have the XM identifier. When a new genome is initially
sequenced, researchers usually use the RefSeq data set to
identify genes that are missing or identify genomic rearrange-
ments within genes, as RefSeq is used internationally as a
standard for genome annotation [21]. RefSeq is a very reliable,
but also conservative, gene reference set. Other reference sets
usually include RefSeq, but extend it substantially. For
instance, the UCSC ‘Known Genes’ has 10% more protein-
coding genes, approximately five times as many putative
coding genes and twice as many splice variants as RefSeq.

A different approach to manual gene annotation is to
annotate transcripts aligned to the genome and take the
genomic sequences as the reference rather than the cDNAs.
This is how the HAVANA group at the Wellcome Trust
Sanger Institute produces its annotation on vertebrate
sequence. Currently, only three vertebrate genomes - human,
mouse and zebrafish - are being fully finished and sequenced
to a quality that merits manual annotation [24]. The finished
genomic sequence is analyzed using a modified Ensembl
pipeline [25], and BLAST results of ¢DNAs/ESTs and
proteins, along with various ab initio predictions, can be
analyzed manually in the annotation browser tool Otterlace.
The advantage of genomic annotation compared with cDNA
annotation is that more alternative spliced variants can be
predicted, as partial EST evidence and protein evidence can be
used, whereas cDNA annotation is limited to availability of
full-length transcripts. Moreover, genomic annotation
produces a more comprehensive analysis of pseudogenes. One
disadvantage, however, is that if a polymorphism occurs in the
reference sequence, a coding transcript cannot be annotated,
whereas ¢cDNA annotation can select the major haplotypic
form and is, therefore, not limited by a reference sequence.

In 2006, the groups mentioned above (NCBI (RefSeq),
UCSC, the Wellcome Trust Sanger Institute (HAVANA) and
Ensembl) identified a need to collaborate and produce a
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consensus gene set for the human reference genome as there
was still no official agreement between the different data-
bases on the human protein-coding genes. Referred to as the
Consensus Coding Sequence Set (CCDS) [26], it currently
contains only those coding transcripts that are equivalent in
each database’s gene build from start codon to stop codon.
The latest human CCDS release (May 2008) contains 20,151
consensus coding sequences representing 17,052 genes. For
the first time, this provides researchers with a consistent
reliable gene set that has been derived independently from a
combination of manual and automated annotation by three
groups (Ensembl, NCBI and HAVANA) and quality checked
at the UCSC. The protein-coding genes that differ between
the gene sets of the different groups and cannot be merged
automatically will be re-examined manually and either
rejected or added to the consensus set if they get a unani-
mous vote from the groups at NCBI, UCSC and HAVANA.

Complementary to the CCDS project is the GENCODE project
[27]. The GENCODE consortium [28] was initially formed to
identify and map all protein-coding genes within the regions
selected in the framework of the ENCODE project [29,30],
representing 1% of human genome sequence. This was
achieved by a combination of initial manual annotation by
HAVANA, computational predictions and experimental
validation, and the consequent refinement of the annotation
on the basis of these experimental results. The project has
been funded in 2008 to annotate the whole reference human
genome sequence and experimentally verify a number of
putative loci. The scaled-up annotation includes identification
of pseudogenes and noncoding loci supported by transcript
evidence. The initial manual annotation is compared with
automated predictions to highlight inconsistencies based on
comparative analysis or new transcript data. It is expected
that, upon completion in 2011, this gene set will become the
standard human gene reference set.

Assessing the annotation

The issue obviously arises of the reliability of the reference
sets. Usually, the experimentally verified manual annota-
tions, such as those produced by GENCODE, are considered
the most exhaustive and reliable reference human gene sets.
Based on ‘bona fide’ cDNA sequences, the annotated gene
models are, in these cases, generally correct - although
issues still remain because, on occasion, the same cDNA
sequence can be mapped into the human genome through
alternative exonic structures. Completeness is more difficult
to assess, because it is unclear how representative of the
complete human transcriptome the current set of ¢cDNA
sequences is.

To assess the completeness of GENCODE, the EGASP
community experiment was organized in 2005 [31]. In this
experiment a number of computational predictions were
evaluated against the GENCODE annotation. Then, a subset
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of high-confidence computational predictions that were
not present in the annotation was tested by reverse trans-
cription-polymerase chain reaction (RT-PCR) on a panel of
human tissues. Only a handful of these predictions could
be verified, strongly suggesting completeness of the
GENCODE annotation (with respect to computational
predictions of protein-coding genes). A second goal of
EGASP was to assess to what extent purely computational
methods can reproduce the slow and expensive manual
annotations. In this regard, EGASP results indicated that
although computational methods are quite accurate in
identifying protein-coding exons with an overall accuracy
of more than 80% (in terms of both the fraction of real
exons correctly identified and the fraction of predicted
exons that are real), finding the complete transcript
structure is more challenging, with the most accurate
methods correctly predicting only about 60% of the
annotated protein-coding transcripts. This indicates that
computational methods cannot yet totally replace human
expertise in gene annotation.

After mapping a ¢cDNA to the genome, the protein-coding
status of the transcript needs to be assessed, and the boun-
daries of the eventual coding regions precisely delimited -
so that it is possible to identify the correct amino acid
sequence of the protein, from which most of the biology of
the transcript will be inferred. As direct evidence of the
existence of the protein is generally absent, the criterion
often used to annotate a transcript as protein-coding is the
existence of an open reading frame (ORF). However, this
criterion has recently been put in question by a number of
methods developed to assess the quality of protein-coding
gene annotations. These are based on the principle that
gene models that conflict with our current knowledge
about functional protein-coding genes are incorrect. Thus,
the rationale of the method of Clamp et al. [9] is that
functional protein-coding genes are subject to purifying
selection, and are therefore expected to show evolutionary
conservation. The authors used two types of measures for
the assessment of evolutionary conservation of predicted
human genes: reading frame conservation (RFC; based on
the observation that indels do not affect significantly the
size of functional proteins) and codon substitution
frequency (CSF; based on the observation that the patterns
of nucleotide substitution in functional protein-coding
genes is different from that observed on random DNA). In
their analysis of a number of human gene reference sets,
Clamp et al. [9] identified around 1,200 human ‘orphans’:
ORFs that lack homology with known genes. Both RFC and
CSF analysis revealed that the behavior of many of these
human orphans is essentially indistinguishable from that
of matched random controls, and is very different from
that of non-orphan protein-coding genes. From these
results, the authors concluded that, overall, about 15% of
the entries in the gene catalogs investigated are not valid
protein-coding genes.
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While the quality-control method of Clamp et al. [9] can
distinguish protein-coding genes from non-coding sequences,
it is less suitable for identifying gene predictions that are
only partially correct. Indeed, if an annotated gene misses
one or more exons, or a fraction of one exon, it may still
display the expected evolutionary characteristics of protein-
coding genes. To find errors in the annotated protein-coding
genes, the MisPred approach [32-35] uses several criteria
that hold for different subsets of correctly folded, correctly
localized, functionally competent protein molecules. Hypo-
thetical proteins that violate any of these rules are judged to
be nonfunctional and the corresponding coding regions to be
misidentified. For example, one of the quality-control tools
of this approach is based on the observation that the number
of residues in closely related members of a globular protein
domain family usually falls within a relatively narrow range.
Accordingly, proteins containing domains that consist of
significantly larger or smaller numbers of residues than
closely related members of the same family may be
suspected to be nonviable and the corresponding genes to be
mispredicted. Several quality-control tools in MisPred address
the issue of whether the predicted protein is able to reach the
cellular compartment where it could be properly folded,
stable and functional. The rationale of these tools is that
mislocalized proteins are usually misfolded, unstable and
nonfunctional. For example, predicted proteins that contain
extracellular domains but lack sequence signals that could
direct these domains to the extracellular space are likely to
be misfolded and nonfunctional. Analyses of predicted
human sequences with MisPred tools revealed that 2.3% of
Ensembl entries (v41) and 3.4% of proteins predicted by the
NCBI’'s Gnomon pipeline are likely to be mislocalized and/or
misfolded as they lack appropriate sequence signals or they
contain domains that deviate from normal size [32].

In a similar spirit, the EPipe pipeline [36] of the BioSapiens
consortium incorporates a variety of tools to assess the
structural and functional properties of hypothetical proteins.
Analysis of the GENCODE peptides with these tools revealed
that many of the potential alternative gene products have
markedly different structure and function from their
constitutively spliced counterparts. For the vast majority of
these alternatively spliced forms, there is little evidence that
they have a role as functional proteins, and many splice
variants encode abnormal proteins that are mislocalized
and/or misfolded [33].

Alternative splicing and protein complexity

Alternative splicing is common in mammalian genomes, and
it has been suggested to be a means of increasing protein
complexity from a limited number of genes. Therefore, any
complete gene set should include annotation of the protein-
coding variants. Detailed cDNA mapping into the genome, as
in the GENCODE annotation, reveals that alternative splicing
is widespread, affecting more than 86% of multi-exon gene
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loci [27] with an average of 5.7 transcript variants per locus.
While this is a proportion of alternative-splicing events
much larger than that in other human reference gene sets,
the use of novel high-throughput methods that concatenate
and sequence the 5 tags of transcripts (cap analysis gene
expression (CAGE) [3]) or sequence paired 5" and 3" cDNA
ends (5" paired-end ditags (5'PETs) [37]) has revealed that
traditional methods based on cDNA clone sequencing were
not fully surveying the complexity of mammalian trans-
criptomes. Similarly, the (re)analysis of gene-trapping
sequences has unveiled thousands of novel transcripts [1].
Tiling oligonucleotide arrays that monitor the expression of
the non-repeated fraction of the genome have consistently
identified many more transcribed fragments than previously
anticipated [38,39]. The combination of all these experi-
mental approaches in the frame of the ENCODE project [30]
surprisingly showed that more than 90% of the genome is
transcribed as primary RNA [29], with at least 15% being
incorporated into processed transcripts. Many such novel
transcripts map to protein-coding loci, as revealed by
experiments in which RACE (rapid amplification of 3" ends)
products originating in these loci were hybridized onto tiling
arrays. When applied to the ENCODE regions, these experi-
ments yielded as many novel as annotated exons [13]. Often
these exons corresponded to tissue-specific 5 distal trans-
cription start sites (TSSs) [13]. These distal TSSs map
hundreds of kilobases upstream of the currently annotated
TSS and often overlap with a 5”-positioned gene, suggesting
extensive overlap between protein-coding loci (Additional
data file 2). Next-generation sequencing will further enhance
our capacity to sequence the transcriptome of the cell
(RNAseq). Indeed, preliminary results demonstrate that
RNAseq can detect 25% more genes than microarrays can
and that a third of the sequences emanate from unannotated
regions [40-45].

Interestingly, only a small fraction of these novel transcripts
seem to have protein-coding capacity - often through
transcription-induced chimeras that fuse two different ORFs
that may be encoded by genes far apart in the genome
[13,46,47]. Instead, the majority correspond to ‘novel’
noncoding RNA classes, such as transcribed pseudogenes
[48-50], antisense transcripts [51-53] and structured RNAs
[54,55], that might regulate transcription and/or translation.
For example, Watanabe et al. [56] recently described
precursor transcripts of small interfering RNAs (siRNAs)
that are derived from transcribed pseudogenes. Other yet-
unannotated RNAs appear to be processed into short RNAs,
some of which, like the ‘promoter-associated sRNAS’
(PASRs) and ‘termini-associated sRNAs’ (TASRs), are
coupled to the expression state of protein-coding genes
[2,57]. Finally, it was postulated that some of these novel
transcripts might be the outcome of interchromosomal
transcript chimerism: that is, chimeric transcripts resulting
from the proximity of active genes in so-called transcription
factories [58].
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In summary, recent technological developments and
large-scale whole-genome analyses have shown that
mammalian transcriptomes are composed of a swarming
mass of different overlapping transcripts, sometimes
originating from both strands, and suggest that only a small
fraction of the transcriptional complexity has been discovered.
Little evidence exists, however, that the majority of this
transcript complexity leads to protein complexity. In fact, all
evidence suggests otherwise - that the human protein-coding
gene set is near consolidation. Thus, the 5.7 average
transcripts per coding locus annotated in GENCODE
translates to only 1.7 proteins per locus (because a large
fraction of transcript variation corresponds to noncoding
transcripts or accumulates in the untranslated regions of
coding transcripts) [27]. Moreover, if the GENCODE proteins
flagged as problematic by the protein-assessment methods
discussed above are ignored, there are barely 1.3 annotated
proteins per locus - a somewhat unexpected return to one of
the founding axioms of molecular biology: Beadle and Tatum’s
‘one gene one protein’ principle. The discrepancy between a
complex, variable and largely unexplored population of RNA
molecules and a relatively small, stable, and well defined
population of proteins constitutes one of the challenges that
molecular biology needs to address to fully elucidate cellular
function.

Additional data files

Additional data file 1 contains a table listing software used
for gene prediction and annotation. The programs are
categorized according to the sources of information utilized
and each listing includes a literature reference and URL
where the software may be obtained. This list is meant to be
representative rather than comprehensive. Additional data
file 2 contains a figure showing novel transcripts discovered
through a combination of directed RACE and hybridization
onto tiling arrays.
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